Patents by Inventor Matteo Troiani
Matteo Troiani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10749588Abstract: Various embodiments of signal shaping systems are disclosed. In some embodiments, a signal shaping system comprises an input configured to receive an input signal. The input signal is transmitted as an optic signal. The signal shaping system comprises a first delay module to generate a first delay signal with a first delay compared to the input signal and a second delay module to generate a second delay signal with a second delay compared to the first delay signal. An inverter is configured to invert the first delay signal to generate an inverted first delay signal. A signal addition operation module is configured to add the inverted first delay signal and the second delay signal together and create a first pulse with a duration of the second delay and a second pulse with a duration of the second delay. An amplifier is configured to cut off the first pulse and amplify the second pulse. A bias loop module is configured to keep the amplifier near a cutoff region.Type: GrantFiled: November 10, 2019Date of Patent: August 18, 2020Assignee: Shenzhen Sibroad Microelectronics Co., LtdInventor: Matteo Troiani
-
Patent number: 10270217Abstract: A driver system with emphasis or de-emphasis control of optic signal generator comprising an input configured to receive an input signal that is to be transmitted as an optic signal. Also part of this system is a rising edge delay creating a first delay signal relative to the input signal and a falling edge delay creating a second delay signal relative to the input signal. A multiplexer receives the first delay signal and the second delay signal and selectively outputs either the first delay signal and the second delay signal to an amplifier. A first amplifier amplifies the input signal to create an amplified input and a second amplifier amplifies the multiplexer output signal to create a de-emphasis signal. A summing junction subtracts the de-emphasis signal from the amplified input to create a driver output signal. The rising and falling edge delays may each comprise two more delays.Type: GrantFiled: August 25, 2017Date of Patent: April 23, 2019Assignee: MACOM Technology Solutions Holdings, Inc.Inventor: Matteo Troiani
-
Patent number: 10263573Abstract: A distributed driver for an optic signal generator has a first amplifier cell with one or more amplifiers configured to receive and amplify an input signal to create a first amplified signal. A second amplifier cell has one or more amplifiers configured to receive and amplify the input signal to create a second amplified signal. A first conductive path and second conductive path connects to the first amplifier cell and the second amplifier cell such that the inductance associated with the first and second conductive path counteracts a capacitance associated with the first amplifier cell and the second amplifier cell. A variable capacitor may be part of the first amplifier cell and/or the second amplifier cell to selectively tune the capacitance of the distributed driver. A distributed bias circuit may be part of the first amplifier cell and/or the second amplifier cell to bias an optic signal transmitter.Type: GrantFiled: August 30, 2017Date of Patent: April 16, 2019Assignee: MACOM Technology Solutions Holdings, Inc.Inventors: Cristiano Bazzani, Matteo Troiani
-
Publication number: 20190045283Abstract: An optical signal module including a driver and an optical signal module. The driver includes a differential pair configured to receive and process an input signal to create a drive signal. A modulation current source provides a modulation current to the differential pair. One or more termination resistors connected to the differential pair for impedance matching. A first switch, responsive to a first control signal, maintains charge on a charge storage device. The optical signal module includes an optical signal generator arranged between a supply voltage node and a bias current node. The optical signal generator receives the drive signal and generates an optical signal representing the input signal. A second switch is between a supply voltage node the bias current node. The second switch, responsive to second control signal, selectively establishes a short between the supply voltage node the bias current node.Type: ApplicationFiled: October 9, 2018Publication date: February 7, 2019Inventors: Matteo Troiani, Cristiano Bazzani, Yanxin Will Wang, Kevin McDonald, Atul Gupta
-
Patent number: 10097908Abstract: An optical signal module including a driver and an optical signal module. The driver includes a differential pair configured to receive and process an input signal to create a drive signal. A modulation current source provides a modulation current to the differential pair. One or more termination resistors connected to the differential pair for impedance matching. A first switch, responsive to a first control signal, maintains charge on a charge storage device. The optical signal module includes an optical signal generator arranged between a supply voltage node and a bias current node. The optical signal generator receives the drive signal and generates an optical signal representing the input signal. A second switch is between a supply voltage node the bias current node. The second switch, responsive to second control signal, selectively establishes a short between the supply voltage node the bias current node.Type: GrantFiled: December 31, 2014Date of Patent: October 9, 2018Assignee: MACOM Technology Solutions Holdings, Inc.Inventors: Matteo Troiani, Cristiano Bazzani, Yanxin Will Wang, Kevin McDonald, Atul Gupta
-
Publication number: 20180062589Abstract: A distributed driver for an optic signal generator has a first amplifier cell with one or more amplifiers configured to receive and amplify an input signal to create a first amplified signal. A second amplifier cell has one or more amplifiers configured to receive and amplify the input signal to create a second amplified signal. A first conductive path and second conductive path connects to the first amplifier cell and the second amplifier cell such that the inductance associated with the first and second conductive path counteracts a capacitance associated with the first amplifier cell and the second amplifier cell. A variable capacitor may be part of the first amplifier cell and/or the second amplifier cell to selectively tune the capacitance of the distributed driver. A distributed bias circuit may be part of the first amplifier cell and/or the second amplifier cell to bias an optic signal transmitter.Type: ApplicationFiled: August 30, 2017Publication date: March 1, 2018Inventors: Cristiano Bazzani, Matteo Troiani
-
Publication number: 20180062343Abstract: A driver system with emphasis or de-emphasis control of optic signal generator comprising an input configured to receive an input signal that is to be transmitted as an optic signal. Also part of this system is a rising edge delay creating a first delay signal relative to the input signal and a falling edge delay creating a second delay signal relative to the input signal. A multiplexer receives the first delay signal and the second delay signal and selectively outputs either the first delay signal and the second delay signal to an amplifier. A first amplifier amplifies the input signal to create an amplified input and a second amplifier amplifies the multiplexer output signal to create a de-emphasis signal. A summing junction subtracts the de-emphasis signal from the amplified input to create a driver output signal. The rising and falling edge delays may each comprise two more delays.Type: ApplicationFiled: August 25, 2017Publication date: March 1, 2018Inventor: Matteo Troiani
-
Publication number: 20160191196Abstract: An optical signal module including a driver and an optical signal module. The driver includes a differential pair configured to receive and process an input signal to create a drive signal. A modulation current source provides a modulation current to the differential pair. One or more termination resistors connected to the differential pair for impedance matching. A first switch, responsive to a first control signal, maintains charge on a charge storage device. The optical signal module includes an optical signal generator arranged between a supply voltage node and a bias current node. The optical signal generator receives the drive signal and generates an optical signal representing the input signal. A second switch is between a supply voltage node the bias current node. The second switch, responsive to second control signal, selectively establishes a short between the supply voltage node the bias current node.Type: ApplicationFiled: December 31, 2014Publication date: June 30, 2016Inventors: Matteo Troiani, Cristiano Bazzani, Will Will Wang, Kevin McDonald, Atul Gupta