Patents by Inventor Matthew A. Sinclair
Matthew A. Sinclair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250116851Abstract: A reimaging lens assembly includes a pentaprismatic optic that includes two reflective surfaces and two refractive surfaces. The reflective surfaces are powered surfaces, and the reflective surfaces may be spherical, aspherical, and/or freeform reflective surfaces. The pentaprismatic optic may receive light from a wide field of view (WFOV), and may change the angle of the output light from that of the input light, for example by 90 degrees. The pentaprismatic optic may be coupled to an image receiver, such as a cooled or uncooled camera. The reimaging lens assembly may include further optical elements between the pentaprismatic optic and the image receiver, such as one or more lenses, filters, and/or cold stops. The lens assembly provides a compact system, with a small number of optical elements, and with desensitized output that reduces image jitter.Type: ApplicationFiled: October 6, 2023Publication date: April 10, 2025Applicant: Raytheon CompanyInventors: Matthew A. Sinclair, Robert B. Chipper
-
Publication number: 20250067553Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.Type: ApplicationFiled: November 12, 2024Publication date: February 27, 2025Applicant: NINEPOINT MEDICAL, INC.Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
-
Patent number: 12235362Abstract: A LiDAR system includes an array of optical emitters, an objective lens optically coupling each optical emitter to a respective unique portion of a field of view, an optical switching network coupled between a laser and the array of optical emitters and a controller coupled to the optical switching network and configured to cause the optical switching network to route light from the laser to a sequence of the optical emitters according to a dynamically varying temporal pattern and to vary the temporal pattern in a way that reduces risk of eye injury from the laser light.Type: GrantFiled: October 25, 2019Date of Patent: February 25, 2025Inventors: Michael G. Moebius, Steven J. Spector, Steven J. Byrnes, Christopher Bessette, Scott Evan Lennox, Matthew A. Sinclair, Francis J. Rogomentich
-
Patent number: 12169124Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.Type: GrantFiled: May 15, 2023Date of Patent: December 17, 2024Assignee: NINEPOINT MEDICAL, INC.Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
-
Publication number: 20240369814Abstract: A multi-band/multi-polarization reflective or catadioptric optical system yields differing effective focal lengths (EFLs) per band/polarization. This approach could be used to create an imaging system, for example. In such case, a sensor (imager, spectrometer, diode, etc.) is located at the one or more focal planes. On the other hand, it could also be used to create a projecting system or hybrid projecting and imaging system by locating an emitter such as an LED, laser, etc.) at the image or focal plane. The system employs polarizers and/or dichroic coatings nano patterns to create different focal lengths and/or fields of view using the same mirrors and/or lenses by, for example, including at least one dichroic coating optically in front of at least one additional mirror to separately reflect the different bands or polarizations.Type: ApplicationFiled: July 15, 2024Publication date: November 7, 2024Inventors: Matthew A. Sinclair, Juha-Pekka Laine
-
Patent number: 12066609Abstract: A multi-band/multi-polarization reflective or catadioptric optical system yields differing effective focal lengths (EFLs) per band/polarization. This approach could be used to create an imaging system, for example. In such case, a sensor (imager, spectrometer, diode, etc.) is located at the one or more focal planes. On the other hand, it could also be used to create a projecting system or hybrid projecting and imaging system by locating an emitter such as an LED, laser, etc.) at the image or focal plane. The system employs polarizers and/or dichroic coatings nano patterns to create different focal lengths and/or fields of view using the same mirrors and/or lenses by, for example, including at least one dichroic coating optically in front of at least one additional mirror to separately reflect the different bands or polarizations.Type: GrantFiled: June 27, 2019Date of Patent: August 20, 2024Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Matthew A. Sinclair, Juha-Pekka Laine
-
Publication number: 20230280154Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.Type: ApplicationFiled: May 15, 2023Publication date: September 7, 2023Applicant: NINEPOINT MEDICAL, INC.Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
-
Patent number: 11698526Abstract: A multi channel beamsplitter system operating over a wide spectral band has high optical performance despite the fact that the incoming and/or exiting light is not collimated and its material is dispersive. This is achieved using wavefront compensators that are matched to the curvature of the wavefronts of the incoming and/or exiting light.Type: GrantFiled: February 7, 2020Date of Patent: July 11, 2023Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Matthew A. Sinclair, Adam F. Kelsey, David A. Landis, Stephanie L. Golmon, Buddy Clemmer, Juha-Pekka Laine
-
Patent number: 11686572Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.Type: GrantFiled: October 12, 2021Date of Patent: June 27, 2023Assignee: Ninepoint Medical, Inc.Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
-
Patent number: 11392805Abstract: A potentially small, gimballed, multi-sensor system employs a shared aperture for at least some of the image sensors. Applications include intelligence, surveillance, target acquisition and reconnaissance (ISTAR), and guiding autonomous vehicles. The system can actively blend images from multiple spectral bands for clarity and interpretability, provide remote identification of objects and material, provide anomaly detection, control lasers and opto-mechanics for image quality, and use shared aperture using folded optics.Type: GrantFiled: June 27, 2019Date of Patent: July 19, 2022Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.Inventors: Matthew A. Sinclair, Adam Kelsey, Paul Aaron Bohn, Stephanie L. Golmon, Francis J. Rogomentich, Juha-Pekka Laine, Buddy A. Clemmer, David A. Landis
-
Patent number: 11287635Abstract: An optical system such as an imaging system, projecting system or combined imaging and projecting system, has complex dielectric coatings and/or reflecting polarizers to separate multiple spectral bands and/or polarizations on one or more of the system's curved mirrors.Type: GrantFiled: June 27, 2019Date of Patent: March 29, 2022Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Matthew A. Sinclair, Paul Aaron Bohn, Juha-Pekka Laine, Francis J. Rogomentich
-
Publication number: 20220042784Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.Type: ApplicationFiled: October 12, 2021Publication date: February 10, 2022Applicant: NINEPOINT MEDICAL, INC.Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
-
Patent number: 11175125Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.Type: GrantFiled: December 2, 2019Date of Patent: November 16, 2021Assignee: NINEPOINT MEDICAL, INC.Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
-
Patent number: 10838150Abstract: A coupling interface arrangement is described for a photonic integrated circuit (PIC) device. The PIC includes an interface coupling surface having optical grating elements arranged to form optical output locations that produce corresponding light output beams. A coupling lens couples the light output beams into a conjugate plane at a far-field scene characterized by one or more optical aberrations that degrade optical resolution of the light outputs. The optical grating elements are configured to correct for the one or more optical aberrations.Type: GrantFiled: November 28, 2018Date of Patent: November 17, 2020Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Michael G. Moebius, Steven J. Byrnes, Steven J. Spector, Francis J. Rogomentich, Matthew A. Sinclair
-
Publication number: 20200257111Abstract: A multi channel beamsplitter system operating over a wide spectral band has high optical performance despite the fact that the incoming and/or exiting light is not collimated and its material is dispersive. This is achieved using wavefront compensators that are matched to the curvature of the wavefronts of the incoming and/or exiting light.Type: ApplicationFiled: February 7, 2020Publication date: August 13, 2020Inventors: Matthew A. Sinclair, Adam F. Kelsey, David A. Landis, Stephanie L. Golmon, Buddy Clemmer, Juha-Pekka Laine
-
Publication number: 20200192133Abstract: A tunable imaging system capable of capturing both broadband and narrow band images is disclosed. The narrow band selection is made possible by constructing a spectral filter with a series of Faraday rotators and polarizers. The dispersion in Faraday Effect discriminates different wavelengths, allowing only light around the desired wavelength to pass through the polarizers. The central wavelength and/or the bandwidth of the filter can be tuned by varying the magnetic field and/or rotating the polarizers.Type: ApplicationFiled: June 27, 2019Publication date: June 18, 2020Inventors: Christine Wang, Matthew A. Sinclair
-
Patent number: 10641859Abstract: A star tracker includes a lens slice, a pixelated image sensor, an ephemeral database and a processor configured to estimate attitude, orientation and/or location of the star tracker based on an image of one or more celestial objects projected by the lens slice onto the pixelated image sensor. The lens slice is smaller and lighter than an optically comparable conventional lens, thereby making the star tracker less voluminous and less massive than conventional star trackers. A lens slice is elongated along one axis. Optical performance along the elongation axis is comparable to that of a conventional circular lens of equal diameter. Although optical performance along a width axis, perpendicular to the elongation axis, of a lens slice can be significantly worse than that of a conventional lens, use of two orthogonal lens slices provides adequate optical performance in both axes, and still saves volume and mass over a conventional lens.Type: GrantFiled: July 27, 2017Date of Patent: May 5, 2020Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Juha-Pekka J. Laine, Robin Mark Adrian Dawson, Daniel M. Meiser, Benjamin F. Lane, Eric T. Hoke, Matthew T. Jamula, Stephen P. Smith, Matthew A. Sinclair
-
Publication number: 20200136340Abstract: A LiDAR system includes an array of optical emitters, an objective lens optically coupling each optical emitter to a respective unique portion of a field of view, an optical switching network coupled between a laser and the array of optical emitters and a controller coupled to the optical switching network and configured to cause the optical switching network to route light from the laser to a sequence of the optical emitters according to a dynamically varying temporal pattern and to vary the temporal pattern in a way that reduces risk of eye injury from the laser light.Type: ApplicationFiled: October 25, 2019Publication date: April 30, 2020Inventors: Michael G. Moebius, Steven J. Spector, Steven J. Byrnes, Christopher Bessette, Scott Evan Lennox, Matthew A. Sinclair, Francis J. Rogomentich
-
Publication number: 20200103216Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.Type: ApplicationFiled: December 2, 2019Publication date: April 2, 2020Inventors: Eman NAMATI, Muhammad AL-QAISI, Matthew A. SINCLAIR, Benedikt GRAF, David VADER
-
Publication number: 20200004001Abstract: A multi-band/multi-polarization reflective or catadioptric optical system yields differing effective focal lengths (EFLs) per band/polarization. This approach could be used to create an imaging system, for example. In such case, a sensor (imager, spectrometer, diode, etc.) is located at the one or more focal planes. On the other hand, it could also be used to create a projecting system or hybrid projecting and imaging system by locating an emitter such as an LED, laser, etc.) at the image or focal plane. The system employs polarizers and/or dichroic coatings nano patterns to create different focal lengths and/or fields of view using the same mirrors and/or lenses by, for example, including at least one dichroic coating optically in front of at least one additional mirror to separately reflect the different bands or polarizations.Type: ApplicationFiled: June 27, 2019Publication date: January 2, 2020Inventors: Matthew A. Sinclair, Juha-Pekka Laine