Patents by Inventor Matthew A. Terrel

Matthew A. Terrel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12332173
    Abstract: Described here are optical sampling architectures and methods for operation thereof. An optical sampling architecture can be capable of emitting a launch sheet light beam towards a launch region and receiving a detection sheet light beam from a detection region. The launch region can have one dimension that is elongated relative to another dimension. The detection region can also have one dimension elongated relative to another dimension such that the system can selectively accept light having one or more properties (e.g., angle of incidence, beam size, beam shape, etc.). In some examples, the elongated dimension of the detection region can be greater than the elongated dimension of the launch region. In some examples, the system can include an outcoupler array and associated components for creating a launch sheet light beam having light rays with different in-plane launch positions and/or in-plane launch angles.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: June 17, 2025
    Inventors: Mark Alan Arbore, Matthew A. Terrel, Jason Pelc
  • Publication number: 20250110043
    Abstract: The disclosure relates to embodiments of optical measurement systems that are configured to perform spectroscopic measurements. The optical measurement systems are configured to provide compact arrangements for introducing light into a sample and collecting light returned from the sample. Reducing the size of the launch and/or collection architecture of an optical measurement system may make the overall optical measurement system smaller, thereby providing flexibility in integrating an optical measurement system into various form factors.
    Type: Application
    Filed: September 16, 2024
    Publication date: April 3, 2025
    Inventors: Mark A. Arbore, Alexander A. Miles, Matthew A. Terrel, Victoria Hwang, Samuel Steven, Trent D. Ridder, Jeffrey T. Hill, Sinclair A. Minshull
  • Publication number: 20250109989
    Abstract: Various embodiments disclosed herein describe photonic integrated circuits and associated optical measurement systems. The photonic integrated circuit may be configured to simultaneously output light of different wavelengths from different outputs of a multiplexer. A switch network, which may include a multiplexing photonic switch, may be used to selectively route the different wavelengths to a common set of launch groups, from which the light may be emitted from the photonic integrated circuit.
    Type: Application
    Filed: September 9, 2024
    Publication date: April 3, 2025
    Inventors: Mark A. Arbore, Thomas C. Greening, Matthew A. Terrel, Trent D. Ridder
  • Publication number: 20250110272
    Abstract: Various embodiments disclosed herein describe photonic switch. The controllable photonic switch may be configured with an asymmetry and different doping level that concurrently route two different wavelengths of light by wavelength-dependent phase shifters. In some instances, the controllable photonic switch includes a waveguide having an asymmetric cross-sectional shape. In other instances, the controllable photonic switch selectively route different wavelengths of light to different outputs of the controllable photonic switch.
    Type: Application
    Filed: August 28, 2024
    Publication date: April 3, 2025
    Inventors: Mark Alan Arbore, Wei Liu, Matthew A Terrel, Jason S Pelc
  • Publication number: 20250067418
    Abstract: Configurations for a photonics assembly design and methods for mitigating coherent noise thereof are disclosed. The photonics assembly may include a set of light sources, an optical subsystem that may include a set of optical elements, and a diffusing element. The light emitted by the set of light sources may be different wavelengths and the light may be de-cohered by a phase shifter before being received by the set of optical elements. The diffusing element may be moveable and may be capable of repeating the same positions or set of positions for each beam of light emitted by the set of light sources. By combining the coherent noise mitigation techniques of the moveable diffusing element and the de-cohered light, the photonics system may provide an illumination profile with a specific spatial profile and angular profile on the sample that allows reliable measurement of the sample and coherent noise mitigation.
    Type: Application
    Filed: November 8, 2024
    Publication date: February 27, 2025
    Inventors: Mark Alan Arbore, Matthew A. Terrel
  • Patent number: 12140291
    Abstract: Configurations for a photonics assembly design and methods for mitigating coherent noise thereof are disclosed. The photonics assembly may include a set of light sources, an optical subsystem that may include a set of optical elements, and a diffusing element. The light emitted by the set of light sources may be different wavelengths and the light may be de-cohered by a phase shifter before being received by the set of optical elements. The diffusing element may be moveable and may be capable of repeating the same positions or set of positions for each beam of light emitted by the set of light sources. By combining the coherent noise mitigation techniques of the moveable diffusing element and the de-cohered light, the photonics system may provide an illumination profile with a specific spatial profile and angular profile on the sample that allows reliable measurement of the sample and coherent noise mitigation.
    Type: Grant
    Filed: December 18, 2023
    Date of Patent: November 12, 2024
    Assignee: APPLE INC.
    Inventors: Mark Alan Arbore, Matthew A. Terrel
  • Patent number: 12111207
    Abstract: Embodiments are directed to optical measurement systems that utilize multiple emitters to emit light during a measurement, as well as methods of performing measurements using these optical measurement systems. The optical measurement systems may include a light generation assembly that is configured to generate light via a light source unit, and a photonic integrated circuit that includes a launch group having a plurality of emitters. Each of these emitters is optically coupled to the light generation assembly to receive light generated from the light generation assembly, and may emit this light from a surface of the photonic integrated circuit. The optical measurement system may perform a measurement in which the light generation assembly generates light and each of the plurality of emitters simultaneously emit light received from the light generation assembly.
    Type: Grant
    Filed: August 16, 2023
    Date of Patent: October 8, 2024
    Assignee: APPLE INC.
    Inventors: Matthew A Terrel, David S Gere, Alexander F Sugarbaker, Thomas C Greening, Jason S Pelc, Mark A. Arbore
  • Publication number: 20240288306
    Abstract: Systems and methods for determining one or more properties of a sample are disclosed. The systems and methods disclosed can be capable of measuring along multiple locations and can reimage and resolve multiple optical paths within the sample. The system can be configured with one-layer or two-layers of optics suitable for a compact system. The optics can be simplified to reduce the number and complexity of the coated optical surfaces, etalon effects, manufacturing tolerance stack-up problems, and interference-based spectroscopic errors. The size, number, and placement of the optics can enable multiple simultaneous or non-simultaneous measurements at various locations across and within the sample. Moreover, the systems can be configured with an optical spacer window located between the sample and the optics, and methods to account for changes in optical paths due to inclusion of the optical spacer window are disclosed.
    Type: Application
    Filed: May 6, 2024
    Publication date: August 29, 2024
    Inventors: Mark Alan Arbore, Gary Shambat, Matthew A. Terrel
  • Patent number: 12007275
    Abstract: Systems and methods for determining one or more properties of a sample are disclosed. The systems and methods disclosed can be capable of measuring along multiple locations and can reimage and resolve multiple optical paths within the sample. The system can be configured with one-layer or two-layers of optics suitable for a compact system. The optics can be simplified to reduce the number and complexity of the coated optical surfaces, et al. on effects, manufacturing tolerance stack-up problems, and interference-based spectroscopic errors. The size, number, and placement of the optics can enable multiple simultaneous or non-simultaneous measurements at various locations across and within the sample. Moreover, the systems can be configured with an optical spacer window located between the sample and the optics, and methods to account for changes in optical paths due to inclusion of the optical spacer window are disclosed.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: June 11, 2024
    Inventors: Mark Alan Arbore, Gary Shambat, Matthew A. Terrel
  • Publication number: 20240117953
    Abstract: Configurations for a photonics assembly design and methods for mitigating coherent noise thereof are disclosed. The photonics assembly may include a set of light sources, an optical subsystem that may include a set of optical elements, and a diffusing element. The light emitted by the set of light sources may be different wavelengths and the light may be de-cohered by a phase shifter before being received by the set of optical elements. The diffusing element may be moveable and may be capable of repeating the same positions or set of positions for each beam of light emitted by the set of light sources. By combining the coherent noise mitigation techniques of the moveable diffusing element and the de-cohered light, the photonics system may provide an illumination profile with a specific spatial profile and angular profile on the sample that allows reliable measurement of the sample and coherent noise mitigation.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Mark Alan Arbore, Matthew A. Terrel
  • Publication number: 20240102856
    Abstract: Embodiments are directed to optical measurement systems that utilize multiple emitters to emit light during a measurement, as well as methods of performing measurements using these optical measurement systems. The optical measurement systems may include a light generation assembly that is configured to generate light via a light source unit, and a photonic integrated circuit that includes a launch group having a plurality of emitters. Each of these emitters is optically coupled to the light generation assembly to receive light generated from the light generation assembly, and may emit this light from a surface of the photonic integrated circuit. The optical measurement system may perform a measurement in which the light generation assembly generates light and each of the plurality of emitters simultaneously emit light received from the light generation assembly.
    Type: Application
    Filed: August 16, 2023
    Publication date: March 28, 2024
    Inventors: Matthew A. Terrel, David S. Gere, Alexander F. Sugarbaker, Thomas C. Greening, Jason S. Pelc, Mark A. Arbore
  • Publication number: 20240094592
    Abstract: Disclosed herein is an integrated photonics device including an on-chip wavelength stability monitor. The wavelength stability monitor may include one or more interferometric components, such as Mach-Zehnder interferometers and can be configured to select among the output signals from the interferometric components for monitoring the wavelength emitted by a corresponding photonic component, such as a light source. The selection may be based on a slope of the output signal and in some examples may correspond to a working zone at or around a wavelength or wavelength range. In some examples, the interferometric components can be configured with different phase differences such that the corresponding working zones have different wavelengths. In some examples, the slopes of the output signals may be weighted based on the steepness of the slope and all of the output signals may include information for wavelength locking the measured wavelength to the target wavelength.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Inventors: Yi-Kuei Wu, Jason Pelc, Mark Alan Arbore, Thomas C. Greening, Matthew A. Terrel, Yongming Tu, Mohamed Mahmoud
  • Patent number: 11852318
    Abstract: Configurations for a photonics assembly design and methods for mitigating coherent noise thereof are disclosed. The photonics assembly may include a set of light sources, an optical subsystem that may include a set of optical elements, and a diffusing element. The light emitted by the set of light sources may be different wavelengths and the light may be de-cohered by a phase shifter before being received by the set of optical elements. The diffusing element may be moveable and may be capable of repeating the same positions or set of positions for each beam of light emitted by the set of light sources. By combining the coherent noise mitigation techniques of the moveable diffusing element and the de-cohered light, the photonics system may provide an illumination profile with a specific spatial profile and angular profile on the sample that allows reliable measurement of the sample and coherent noise mitigation.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: December 26, 2023
    Assignee: Apple Inc.
    Inventors: Mark Alan Arbore, Matthew A. Terrel
  • Patent number: 11835836
    Abstract: Disclosed herein is an integrated photonics device including an on-chip wavelength stability monitor. The wavelength stability monitor may include one or more interferometric components, such as Mach-Zehnder interferometers and can be configured to select among the output signals from the interferometric components for monitoring the wavelength emitted by a corresponding photonic component, such as a light source. The selection may be based on a slope of the output signal and in some examples may correspond to a working zone at or around a wavelength or wavelength range. In some examples, the interferometric components can be configured with different phase differences such that the corresponding working zones have different wavelengths. In some examples, the slopes of the output signals may be weighted based on the steepness of the slope and all of the output signals may include information for wavelength locking the measured wavelength to the target wavelength.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: December 5, 2023
    Assignee: Apple Inc.
    Inventors: Yi-Kuei Wu, Jason Pelc, Mark Alan Arbore, Thomas C. Greening, Matthew A. Terrel, Yongming Tu, Mohamed Mahmoud
  • Publication number: 20230324286
    Abstract: Various embodiments disclosed herein describe optical measurement systems for characterizing a sample. The optical measurement systems may selectively emit light from different numbers of launch groups, and may include a multi-stage optical switch network that may be controlled to route light to a desired number of launch groups. The optical measurement systems may further measure light using a corresponding number of detector groups. The optical measurement systems may perform measurements using a plurality of different wavelengths, where different groups of these wavelengths may be measured using different numbers of launch groups (as well as corresponding detector groups).
    Type: Application
    Filed: March 14, 2023
    Publication date: October 12, 2023
    Inventors: Jason S. Pelc, Mark A. Arbore, Matthew A. Terrel, Thomas C. Greening, Yongming Tu, Lucia Gan
  • Publication number: 20230314321
    Abstract: An illuminator/collector assembly can deliver incident light to a sample and collect return light returning from the sample. A sensor can measure ray intensities as a function of ray position and ray angle for the collected return light. A ray selector can select a first subset of rays from the collected return light at the sensor that meet a first selection criterion. In some examples, the ray selector can aggregate ray intensities into bins, each bin corresponding to rays in the collected return light that traverse within the sample an estimated optical path length within a respective range of optical path lengths. A characterizer can determine a physical property of the sample, such as absorptivity, based on the ray intensities, ray positions, and ray angles for the first subset of rays. Accounting for variations in optical path length traversed within the sample can improve accuracy.
    Type: Application
    Filed: June 4, 2023
    Publication date: October 5, 2023
    Inventors: Mark Alan Arbore, Matthew A. Terrel
  • Publication number: 20230266243
    Abstract: Described here are optical sampling architectures and methods for operation thereof. An optical sampling architecture can be capable of emitting a launch sheet light beam towards a launch region and receiving a detection sheet light beam from a detection region. The launchregion can have one dimension that is elongated relative to another dimension. The detection region can also have one dimension elongated relative to another dimension such that the system can selectively accept light having one or more properties (e.g., angle of incidence, beam size, beam shape, etc.). In some examples, the elongated dimension of the detection region can be greater than the elongated dimension of the launch region. In some examples, the system can include an outcoupler array and associated components for creating a launch sheet light beam having light rays with different in-plane launch positions and/or in-plane launch angles.
    Type: Application
    Filed: February 10, 2023
    Publication date: August 24, 2023
    Inventors: Mark Alan Arbore, Matthew A. Terrel, Jason Pelc
  • Patent number: 11726036
    Abstract: An illuminator/collector assembly can deliver incident light to a sample and collect return light returning from the sample. A sensor can measure ray intensities as a function of ray position and ray angle for the collected return light. A ray selector can select a first subset of rays from the collected return light at the sensor that meet a first selection criterion. In some examples, the ray selector can aggregate ray intensities into bins, each bin corresponding to rays in the collected return light that traverse within the sample an estimated optical path length within a respective range of optical path lengths. A characterizer can determine a physical property of the sample, such as absorptivity, based on the ray intensities, ray positions, and ray angles for the first subset of rays. Accounting for variations in optical path length traversed within the sample can improve accuracy.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: August 15, 2023
    Assignee: Apple Inc.
    Inventors: Mark Alan Arbore, Matthew A. Terrel
  • Patent number: 11579080
    Abstract: Described here are optical sampling architectures and methods for operation thereof. An optical sampling architecture can be capable of emitting a launch sheet light beam towards a launch region and receiving a detection sheet light beam from a detection region. The launch region can have one dimension that is elongated relative to another dimension. The detection region can also have one dimension elongated relative to another dimension such that the system can selectively accept light having one or more properties (e.g., angle of incidence, beam size, beam shape, etc.). In some examples, the elongated dimension of the detection region can be greater than the elongated dimension of the launch region. In some examples, the system can include an outcoupler array and associated components for creating a launch sheet light beam having light rays with different in-plane launch positions and/or in-plane launch angles.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: February 14, 2023
    Inventors: Mark Alan Arbore, Matthew A. Terrel, Jason Pele
  • Publication number: 20220136899
    Abstract: Systems and methods for determining one or more properties of a sample are disclosed. The systems and methods disclosed can be capable of measuring along multiple locations and can reimage and resolve multiple optical paths within the sample. The system can be configured with one-layer or two-layers of optics suitable for a compact system. The optics can be simplified to reduce the number and complexity of the coated optical surfaces, et al. on effects, manufacturing tolerance stack-up problems, and interference-based spectroscopic errors. The size, number, and placement of the optics can enable multiple simultaneous or non-simultaneous measurements at various locations across and within the sample. Moreover, the systems can be configured with an optical spacer window located between the sample and the optics, and methods to account for changes in optical paths due to inclusion of the optical spacer window are disclosed.
    Type: Application
    Filed: January 14, 2022
    Publication date: May 5, 2022
    Inventors: Mark Alan Arbore, Gary Shambat, Matthew A. Terrel