Patents by Inventor Matthew A. Yanagi

Matthew A. Yanagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10638967
    Abstract: A handheld radio device that incorporates within equipment typically carried by a first-responder but with added functionality which enables assessments of a subject's cognitive, auditory, visual, and speech function. In addition to providing two-way tactical radio functionality, the handheld radio device operates to generate haptic, audible, and visual stimuli, and then assess a subject utilizing the handheld radio device based on the subject's responses to the stimuli on the interfaces and sensors of the handheld radio device. Because this functionality is provided in equipment this is already typically carried by the first-responder, assessments that are more forward-deployed and closer to the point and time of injury, exposure, or period of interest can occur.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: May 5, 2020
    Assignee: United States of America as represented by the Navy
    Inventor: Matthew A. Yanagi
  • Publication number: 20200029885
    Abstract: A handheld radio device that incorporates within equipment typically carried by a first-responder but with added functionality which enables assessments of a subject's cognitive, auditory, visual, and speech function. In addition to providing two-way tactical radio functionality, the handheld radio device operates to generate haptic, audible, and visual stimuli, and then assess a subject utilizing the handheld radio device based on the subject's responses to the stimuli on the interfaces and sensors of the handheld radio device. Because this functionality is provided in equipment this is already typically carried by the first-responder, assessments that are more forward-deployed and closer to the point and time of injury, exposure, or period of interest can occur.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 30, 2020
    Applicant: United States of America as represented by Secretary of the Navy
    Inventor: Matthew A. Yanagi
  • Patent number: 10338157
    Abstract: A biosignal measuring device that can include at least one Super-conducting Quantum Interference Device (SQUID) array (SQA) of High Temperature Superconducting (HTS) Josephson Junctions (JJs). The HTS JJs operating parameters can be adjusted to establish an anti-peak response for the SQA, that can be at a maximum along a defined response axis, for detection of extremely small biomagnetic fields. For operation, the SQA can be maneuvered around a target area of a stationary subject that is emitting biomagnetic signals using a stand with three degrees of freedom, so that the response axis remains orthogonal to the subject target area. The device can further include a radome with an atomic layer deposition (ALD) window on the radome surface. The radome ALD surface can allow for passage of magnetic signals through the ALD window and radome, while simultaneously preventing passage of infrared radiation therethrough.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: July 2, 2019
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Marcio C. de Andrade, Anna Leese de Escobar, Brandon J. Wiedemeier, Jamie R. Lukos, Shannon Kasa, Matthew A. Yanagi
  • Publication number: 20180267116
    Abstract: A biosignal measuring device that can include at least one Super-conducting Quantum Interference Device (SQUID) array (SQA) of High Temperature Superconducting (HTS) Josephson Junctions (JJs). The HTS JJs operating parameters can be adjusted to establish an anti-peak response for the SQA, that can be at a maximum along a defined response axis, for detection of extremely small biomagnetic fields. For operation, the SQA can be maneuvered around a target area of a stationary subject that is emitting biomagnetic signals using a stand with three degrees of freedom, so that the response axis remains orthogonal to the subject target area. The device can further include a radome with an atomic layer deposition (ALD) window on the radome surface. The radome ALD surface can allow for passage of magnetic signals through the ALD window and radome, while simultaneously preventing passage of infrared radiation therethrough.
    Type: Application
    Filed: May 16, 2018
    Publication date: September 20, 2018
    Applicant: United States of America, as Represented by the Secretary of the Navy
    Inventors: Marcio C. de Andrade, Anna Leese de Escobar, Brandon J. Wiedemeier, Jamie R. Lukos, Shannon Kasa, Matthew A. Yanagi
  • Patent number: 8932199
    Abstract: Sleep mask for reducing sleep inertia. In an embodiment, the sleep mask comprises a foam layer having a shape that covers both of a human subject's eyes so as to attenuate ambient light. Visual stimulation element(s), configured to emit light, are positioned between the foam layer and the subject's eyes. In addition, a plurality of sensors positioned on the forehead of the subject collect electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG) signals. A soft exterior cover houses the foam layer, the visual stimulation element(s), and the sensors. The sleep mask further comprises processor(s) that determine and record each sleep stage of the subject, determine when to wake the subject, and, when it is determined to wake the subject, control the visual stimulation element(s) to wake the subject using emitted light.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: January 13, 2015
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Christine Berka, Djordje Popovic, Dan Levendowski, Gene Davis, Catherine McConnell, Matthew A. Yanagi
  • Publication number: 20140303428
    Abstract: Sleep mask for reducing sleep inertia. In an embodiment, the sleep mask comprises a foam layer having a shape that covers both of a human subject's eyes so as to attenuate ambient light. Visual stimulation element(s), configured to emit light, are positioned between the foam layer and the subject's eyes. In addition, a plurality of sensors positioned on the forehead of the subject collect electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG) signals. A soft exterior cover houses the foam layer, the visual stimulation element(s), and the sensors. The sleep mask further comprises processor(s) that determine and record each sleep stage of the subject, determine when to wake the subject, and, when it is determined to wake the subject, control the visual stimulation element(s) to wake the subject using emitted light.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventors: Christine Berka, Djordje Popovic, Dan Levendowski, Gene Davis, Catherine McConnell, Matthew A. Yanagi
  • Patent number: 8784293
    Abstract: Systems and methods for optimizing sleep and post-sleep performance. In an embodiment, a system comprising a device and sleep mask are provided. The mask may comprise electroencephalographic (EEG) sensors and one or more stimulation elements configured to stimulate the senses of a wearer of the mask. The mask may be releasably and electrically coupled to a device which receives EEG signals from the mask, determines current and target sleep states based, at least in part, on the EEG signals, and uses this determination to tailor a sleep architecture of the wearer by controlling the stimulation elements. The mask may be a soft mask which utilizes conductive thread embroidered into one or more textile layers. In an embodiment, the stimulation elements may comprise one or more heating elements, electroluminescent panels, and speakers. In addition, the EEG sensors may comprise hybrid sensors comprising hydrogel in a conductive spacer fabric.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: July 22, 2014
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Christine Berka, Djordje Popovic, Dan Levendowski, Gene Davis, Catherine McConnell, Matthew A. Yanagi
  • Patent number: 8628462
    Abstract: Systems and methods for optimizing the sleep and post-sleep performance of individuals regardless of their environment and time available for sleep are provided. The systems and methods take into account factors that determine the effects of a sleep episode on dexterity, cognitive functions and the subjective feeling of fatigue after sleeping: duration and sleep architecture of the sleep episode, point on the circadian cycle at which the episode occurred, the amount of sleep debt accumulated prior to the episode and the subject's susceptibility to sleep deprivation. The systems and methods include monitoring of sleep architecture over a longer period of time, measurement of accumulated sleep debt and assessment and/or tailoring of the sleep architecture for each subsequent sleep episode, determining a desired sleep state in which the subject should be in, and generating sensory stimuli for guiding the subject to the desired sleep state.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: January 14, 2014
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Chris Berka, Djordje Popovic, Gene Davis, Matthew A. Yanagi
  • Publication number: 20130303837
    Abstract: Systems and methods for optimizing sleep and post-sleep performance. In an embodiment, a system comprising a device and sleep mask are provided. The mask may comprise electroencephalographic (EEG) sensors and one or more stimulation elements configured to stimulate the senses of a wearer of the mask. The mask may be releasably and electrically coupled to a device which receives EEG signals from the mask, determines current and target sleep states based, at least in part, on the EEG signals, and uses this determination to tailor a sleep architecture of the wearer by controlling the stimulation elements. The mask may be a soft mask which utilizes conductive thread embroidered into one or more textile layers. In an embodiment, the stimulation elements may comprise one or more heating elements, electroluminescent panels, and speakers. In addition, the EEG sensors may comprise hybrid sensors comprising hydrogel in a conductive spacer fabric.
    Type: Application
    Filed: June 5, 2013
    Publication date: November 14, 2013
    Inventors: Christine Berka, Djordje Popovic, Dan Levendowski, Gene Davis, Catherine McConnell, Matthew A. Yanagi
  • Publication number: 20100087701
    Abstract: Systems and methods for optimizing the sleep and post-sleep performance of individuals regardless of their environment and time available for sleep are provided. The systems and methods take into account factors that determine the effects of a sleep episode on dexterity, cognitive functions and the subjective feeling of fatigue after sleeping: duration and sleep architecture of the sleep episode, point on the circadian cycle at which the episode occurred, the amount of sleep debt accumulated prior to the episode and the subject's susceptibility to sleep deprivation. The systems and methods include monitoring of sleep architecture over a longer period of time, measurement of accumulated sleep debt and assessment and/or tailoring of the sleep architecture for each subsequent sleep episode, determining a desired sleep state in which the subject should be in, and generating sensory stimuli for guiding the subject to the desired sleep state.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 8, 2010
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Chris Berka, Djordje Popovic, Gene Davis, Matthew A. Yanagi