Patents by Inventor Matthew Alastair Johnson
Matthew Alastair Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12182922Abstract: To compute an image of a dynamic 3D scene comprising a 3D object, a description of a deformation of the 3D object is received, the description comprising a cage of primitive 3D elements and associated animation data from a physics engine or an articulated object model. For a pixel of the image the method computes a ray from a virtual camera through the pixel into the cage animated according to the animation data and computes a plurality of samples on the ray. Each sample is a 3D position and view direction in one of the 3D elements. The method computes a transformation of the samples into a canonical cage. For each transformed sample, the method queries a learnt radiance field parameterization of the 3D scene to obtain a color value and an opacity value. A volume rendering method is applied to the color and opacity values producing a pixel value of the image.Type: GrantFiled: September 19, 2022Date of Patent: December 31, 2024Assignee: Microsoft Technology Licensing, LLCInventors: Julien Pascal Christophe Valentin, Virginia Estellers Casas, Shideh Rezaeifar, Jingjing Shen, Stanislaw Kacper Szymanowicz, Stephan Joachim Garbin, Marek Adam Kowalski, Matthew Alastair Johnson
-
Publication number: 20240419967Abstract: A neural network training apparatus is described which has a network of worker nodes each having a memory storing a subgraph of a neural network to be trained. The apparatus has a control node connected to the network of worker nodes. The control node is configured to send training data instances into the network to trigger parallelized message passing operations which implement a training algorithm which trains the neural network. At least some of the message passing operations asynchronously update parameters of individual subgraphs of the neural network at the individual worker nodes.Type: ApplicationFiled: August 23, 2024Publication date: December 19, 2024Inventors: Ryota TOMIOKA, Matthew Alastair JOHNSON, Daniel Stefan TARLOW, Samuel Alexander WEBSTER, Dimitrios VYTINIOTIS, Alexander Lloyd GAUNT, Maik RIECHERT
-
Publication number: 20240320498Abstract: There is a region of interest of a synthetic image depicting an object from a class of objects. A trained neural image generator, having been trained to map embeddings from a latent space to photorealistic images of objects in the class, is accessed. A first embedding is computed from the latent space, the first embedding corresponding to an image which is similar to the region of interest while maintaining photorealistic appearance. A second embedding is computed from the latent space, the second embedding corresponding to an image which matches the synthetic image. Blending of the first embedding and the second embedding is done to form a blended embedding. At least one output image is generated from the blended embedding, the output image being more photorealistic than the synthetic image.Type: ApplicationFiled: May 23, 2024Publication date: September 26, 2024Inventors: Stephan Joachim GARBIN, Marek Adam KOWALSKI, Matthew Alastair JOHNSON, Tadas BALTRUSAITIS, Martin DE LA GORCE, Virginia ESTELLERS CASAS, Sebastian Karol DZIADZIO, Jamie Daniel Joseph SHOTTON
-
Patent number: 12099927Abstract: A neural network training apparatus is described which has a network of worker nodes each having a memory storing a subgraph of a neural network to be trained. The apparatus has a control node connected to the network of worker nodes. The control node is configured to send training data instances into the network to trigger parallelized message passing operations which implement a training algorithm which trains the neural network. At least some of the message passing operations asynchronously update parameters of individual subgraphs of the neural network at the individual worker nodes.Type: GrantFiled: March 28, 2022Date of Patent: September 24, 2024Assignee: Microsoft Technology Licensing, LLC.Inventors: Ryota Tomioka, Matthew Alastair Johnson, Daniel Stefan Tarlow, Samuel Alexander Webster, Dimitrios Vytiniotis, Alexander Lloyd Gaunt, Maik Riechert
-
Patent number: 12045925Abstract: In various examples there is an apparatus for computing an image depicting a face of a wearer of a head mounted display (HMD), as if the wearer was not wearing the HMD. An input image depicts a partial view of the wearer's face captured from at least one face facing capture device in the HMD. A machine learning apparatus is available which has been trained to compute expression parameters from the input image. A 3D face model that has expressions parameters is accessible as well as a photorealiser being a machine learning model trained to map images rendered from the 3D face model to photorealistic images. The apparatus computes expression parameter values from the image using the machine learning apparatus. The apparatus drives the 3D face model with the expression parameter values to produce a 3D model of the face of the wearer and then renders the 3D model from a specified viewpoint to compute a rendered image. The rendered image is upgraded to a photorealistic image using the photorealiser.Type: GrantFiled: June 11, 2020Date of Patent: July 23, 2024Assignee: Microsoft Technology Licensing, LLCInventors: Matthew Alastair Johnson, Marta Malgorzata Wilczkowiak, Daniel Stephen Wilde, Paul Malcolm McIlroy, Tadas Baltrusaitis, Virginia Estellers Casas, Marek Adam Kowalski, Christopher Maurice Mei, Stephan Joachim Garbin
-
Patent number: 12033084Abstract: There is a region of interest of a synthetic image depicting an object from a class of objects. A trained neural image generator, having been trained to map embeddings from a latent space to photorealistic images of objects in the class, is accessed. A first embedding is computed from the latent space, the first embedding corresponding to an image which is similar to the region of interest while maintaining photorealistic appearance. A second embedding is computed from the latent space, the second embedding corresponding to an image which matches the synthetic image. Blending of the first embedding and the second embedding is done to form a blended embedding. At least one output image is generated from the blended embedding, the output image being more photorealistic than the synthetic image.Type: GrantFiled: May 23, 2022Date of Patent: July 9, 2024Assignee: Microsoft Technology Licensing, LLCInventors: Stephan Joachim Garbin, Marek Adam Kowalski, Matthew Alastair Johnson, Tadas Baltrusaitis, Martin De La Gorce, Virginia Estellers Casas, Sebastian Karol Dziadzio, Jamie Daniel Joseph Shotton
-
Publication number: 20240037829Abstract: To compute an image of a dynamic 3D scene comprising a 3D object, a description of a deformation of the 3D object is received, the description comprising a cage of primitive 3D elements and associated animation data from a physics engine or an articulated object model. For a pixel of the image the method computes a ray from a virtual camera through the pixel into the cage animated according to the animation data and computes a plurality of samples on the ray. Each sample is a 3D position and view direction in one of the 3D elements. The method computes a transformation of the samples into a canonical cage. For each transformed sample, the method queries a learnt radiance field parameterization of the 3D scene to obtain a color value and an opacity value. A volume rendering method is applied to the color and opacity values producing a pixel value of the image.Type: ApplicationFiled: September 19, 2022Publication date: February 1, 2024Inventors: Julien Pascal Christophe VALENTIN, Virginia ESTELLERS CASAS, Shideh REZAEIFAR, Jingjing SHEN, Stanislaw Kacper SZYMANOWICZ, Stephan Joachim GARBIN, Marek Adam KOWALSKI, Matthew Alastair JOHNSON
-
Publication number: 20230360309Abstract: In various examples there is a method of image processing comprising: storing a real image of an object in memory, the object being a specified type of object. The method involves computing, using a first encoder, a factorized embedding of the real image. The method receives a value of at least one parameter of a synthetic image rendering apparatus for rendering synthetic images of objects of the specified type. The parameter controls an attribute of synthetic images of objects rendered by the rendering apparatus. The method computes an embedding factor of the received value using a second encoder. The factorized embedding is modified with the computed embedding factor. The method computes, using a decoder with the modified embedding as input, an output image of an object which is substantially the same as the real image except for the attribute controlled by the parameter.Type: ApplicationFiled: July 18, 2023Publication date: November 9, 2023Inventors: Marek Adam KOWALSKI, Stephan Joachim GARBIN, Matthew Alastair JOHNSON, Tadas BALTRUSAITIS, Martin DE LA GORCE, Virginia ESTELLERS CASAS, Sebastian Karol DZIADZIO
-
Publication number: 20230281945Abstract: Keypoints are predicted in an image. A neural network is executed that is configured to predict each of the keypoints as a 2D random variable, normally distributed with a 2D position and 2×2 covariance matrix. The neural network is trained to maximize a log-likelihood that samples from each of the predicted keypoints equal a ground truth. The trained neural network is used to predict keypoints of an image without generating a heatmap.Type: ApplicationFiled: June 28, 2022Publication date: September 7, 2023Inventors: Thomas Joseph CASHMAN, Erroll William WOOD, Martin DE LA GORCE, Tadas BALTRUSAITIS, Daniel Stephen WILDE, Jingjing SHEN, Matthew Alastair JOHNSON, Julien Pascal Christophe VALENTIN
-
Publication number: 20230281863Abstract: Keypoints are predicted in an image. Predictions are generated for each of the keypoints of an image as a 2D random variable, normally distributed with location (x, y) and standard deviation sigma. A neural network is trained to maximize a log-likelihood that samples from each of the predicted keypoints equal a ground truth. The trained neural network is used to predict keypoints of an image without generating a heatmap.Type: ApplicationFiled: June 28, 2022Publication date: September 7, 2023Inventors: Julien Pascal Christophe VALENTIN, Erroll William WOOD, Thomas Joseph CASHMAN, Martin de LA GORCE, Tadas BALTRUSAITIS, Daniel Stephen WILDE, Jingjing SHEN, Matthew Alastair JOHNSON, Charles Thomas HEWITT, Nikola MILOSAVLJEVIC, Stephan Joachim GARBIN, Toby SHARP, Ivan STOJILJKOVIC
-
Patent number: 11748932Abstract: In various examples there is a method of image processing comprising: storing a real image of an object in memory, the object being a specified type of object. The method involves computing, using a first encoder, a factorized embedding of the real image. The method receives a value of at least one parameter of a synthetic image rendering apparatus for rendering synthetic images of objects of the specified type. The parameter controls an attribute of synthetic images of objects rendered by the rendering apparatus. The method computes an embedding factor of the received value using a second encoder. The factorized embedding is modified with the computed embedding factor. The method computes, using a decoder with the modified embedding as input, an output image of an object which is substantially the same as the real image except for the attribute controlled by the parameter.Type: GrantFiled: June 29, 2020Date of Patent: September 5, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Marek Adam Kowalski, Stephan Joachim Garbin, Matthew Alastair Johnson, Tadas Baltrusaitis, Martin De la Gorce, Virginia Estellers Casas, Sebastian Karol Dziadzio
-
Patent number: 11640690Abstract: Methods and systems are provided for training a machine learning model to generate density values and radiance components based on positional data, along with a weighting scheme associated with a particular view direction based on directional data to compute a final RGB value for each point along a plurality of camera rays. The positional data and directional data are extracted from set of training images of a particular static scene. The radiance components, density values, and weighting schemes are cached for efficient image data processing to perform volume rendering for each point sampled. A novel viewpoint of a static scene is generated based on the volume rendering for each point sampled.Type: GrantFiled: May 17, 2021Date of Patent: May 2, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Stephan Joachim Garbin, Marek Adam Kowalski, Matthew Alastair Johnson
-
Publication number: 20230116250Abstract: Computing an output image of a dynamic scene. A value of E is selected which is a parameter describing desired dynamic content of the scene in the output image. Using selected intrinsic camera parameters and a selected viewpoint, for individual pixels of the output image to be generated, the method computes a ray that goes from a virtual camera through the pixel into the dynamic scene. For individual ones of the rays, sample at least one point along the ray. For individual ones of the sampled points, a viewing direction being a direction of the corresponding ray, and E, query a machine learning model to produce colour and opacity values at the sampled point with the dynamic content of the scene as specified by E. For individual ones of the rays, apply a volume rendering method to the colour and opacity values computed along that ray, to produce a pixel value of the output image.Type: ApplicationFiled: December 13, 2022Publication date: April 13, 2023Inventors: Marek Adam KOWALSKI, Matthew Alastair JOHNSON, Jamie Daniel Joseph SHOTTON
-
Patent number: 11551405Abstract: Computing an output image of a dynamic scene. A value of E is selected which is a parameter describing desired dynamic content of the scene in the output image. Using selected intrinsic camera parameters and a selected viewpoint, for individual pixels of the output image to be generated, the method computes a ray that goes from a virtual camera through the pixel into the dynamic scene. For individual ones of the rays, sample at least one point along the ray. For individual ones of the sampled points, a viewing direction being a direction of the corresponding ray, and E, query a machine learning model to produce colour and opacity values at the sampled point with the dynamic content of the scene as specified by E. For individual ones of the rays, apply a volume rendering method to the colour and opacity values computed along that ray, to produce a pixel value of the output image.Type: GrantFiled: July 13, 2020Date of Patent: January 10, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Marek Adam Kowalski, Matthew Alastair Johnson, Jamie Daniel Joseph Shotton
-
Publication number: 20220301257Abstract: Methods and systems are provided for training a machine learning model to generate density values and radiance components based on positional data, along with a weighting scheme associated with a particular view direction based on directional data to compute a final RGB value for each point along a plurality of camera rays. The positional data and directional data are extracted from set of training images of a particular static scene. The radiance components, density values, and weighting schemes are cached for efficient image data processing to perform volume rendering for each point sampled. A novel viewpoint of a static scene is generated based on the volume rendering for each point sampled.Type: ApplicationFiled: May 17, 2021Publication date: September 22, 2022Inventors: Stephan Joachim GARBIN, Marek Adam KOWALSKI, Matthew Alastair JOHNSON
-
Publication number: 20220284655Abstract: There is a region of interest of a synthetic image depicting an object from a class of objects. A trained neural image generator, having been trained to map embeddings from a latent space to photorealistic images of objects in the class, is accessed. A first embedding is computed from the latent space, the first embedding corresponding to an image which is similar to the region of interest while maintaining photorealistic appearance. A second embedding is computed from the latent space, the second embedding corresponding to an image which matches the synthetic image. Blending of the first embedding and the second embedding is done to form a blended embedding. At least one output image is generated from the blended embedding, the output image being more photorealistic than the synthetic image.Type: ApplicationFiled: May 23, 2022Publication date: September 8, 2022Inventors: Stephan Joachim GARBIN, Marek Adam KOWALSKI, Matthew Alastair JOHNSON, Tadas BALTRUSAITIS, Martin DE LA GORCE, Virginia ESTELLERS CASAS, Sebastian Karol DZIADZIO, Jamie Daniel Joseph SHOTTON
-
Publication number: 20220222531Abstract: A neural network training apparatus is described which has a network of worker nodes each having a memory storing a subgraph of a neural network to be trained. The apparatus has a control node connected to the network of worker nodes. The control node is configured to send training data instances into the network to trigger parallelized message passing operations which implement a training algorithm which trains the neural network. At least some of the message passing operations asynchronously update parameters of individual subgraphs of the neural network at the individual worker nodes.Type: ApplicationFiled: March 28, 2022Publication date: July 14, 2022Inventors: Ryota TOMIOKA, Matthew Alastair JOHNSON, Daniel Stefan TARLOW, Samuel Alexander WEBSTER, Dimitrios VYTINIOTIS, Alexander Lloyd GAUNT, Maik RIECHERT
-
Patent number: 11354846Abstract: There is a region of interest of a synthetic image depicting an object from a class of objects. A trained neural image generator, having been trained to map embeddings from a latent space to photorealistic images of objects in the class, is accessed. A first embedding is computed from the latent space, the first embedding corresponding to an image which is similar to the region of interest while maintaining photorealistic appearance. A second embedding is computed from the latent space, the second embedding corresponding to an image which matches the synthetic image. Blending of the first embedding and the second embedding is done to form a blended embedding. At least one output image is generated from the blended embedding, the output image being more photorealistic than the synthetic image.Type: GrantFiled: June 29, 2020Date of Patent: June 7, 2022Assignee: Microsoft Technology Licensing, LLCInventors: Stephan Joachim Garbin, Marek Adam Kowalski, Matthew Alastair Johnson, Tadas Baltrusaitis, Martin De La Gorce, Virginia Estellers Casas, Sebastian Karol Dziadzio, Jamie Daniel Joseph Shotton
-
Patent number: 11288575Abstract: A neural network training apparatus is described which has a network of worker nodes each having a memory storing a subgraph of a neural network to be trained. The apparatus has a control node connected to the network of worker nodes. The control node is configured to send training data instances into the network to trigger parallelized message passing operations which implement a training algorithm which trains the neural network. At least some of the message passing operations asynchronously update parameters of individual subgraphs of the neural network at the individual worker nodes.Type: GrantFiled: May 18, 2017Date of Patent: March 29, 2022Assignee: Microsoft Technology Licensing, LLCInventors: Ryota Tomioka, Matthew Alastair Johnson, Daniel Stefan Tarlow, Samuel Alexander Webster, Dimitrios Vytiniotis, Alexander Lloyd Gaunt, Maik Riechert
-
Publication number: 20210390761Abstract: Computing an output image of a dynamic scene. A value of E is selected which is a parameter describing desired dynamic content of the scene in the output image. Using selected intrinsic camera parameters and a selected viewpoint, for individual pixels of the output image to be generated, the method computes a ray that goes from a virtual camera through the pixel into the dynamic scene. For individual ones of the rays, sample at least one point along the ray. For individual ones of the sampled points, a viewing direction being a direction of the corresponding ray, and E, query a machine learning model to produce colour and opacity values at the sampled point with the dynamic content of the scene as specified by E. For individual ones of the rays, apply a volume rendering method to the colour and opacity values computed along that ray, to produce a pixel value of the output image.Type: ApplicationFiled: July 13, 2020Publication date: December 16, 2021Inventors: Marek Adam KOWALSKI, Matthew Alastair JOHNSON, Jamie Daniel Joseph SHOTTON