Patents by Inventor Matthew Alexander Lehar

Matthew Alexander Lehar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8657011
    Abstract: A method for providing auxiliary electrical power to an underwater well installation, the installation being linked to a surface location via an umbilical cable, to supplement any electrical power received at the installation from the umbilical cable, comprises the steps of: providing power generation means at the installation; and providing an electrical power output line for transferring electrical power generated by the power generation means to the installation.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 25, 2014
    Assignee: Vetco Gray Controls Limited
    Inventors: Parag Vyas, Matthew Alexander Lehar, Ashalatha Devarajan, Peter John Davey, Nicholas Ellson
  • Patent number: 8561405
    Abstract: A waste heat recovery system includes at least two integrated rankine cycle systems coupled to at least two separate heat sources having different temperatures. The first rankine cycle system is coupled to a first heat source and configured to circulate a first working fluid. The second rankine cycle system is coupled to at least one second heat source and configured to circulate a second working fluid. The at least one second heat source includes a lower temperature heat source than the first heat source. The first and second working fluid are circulatable in heat exchange relationship through a cascading heat exchange unit for condensation of the first working fluid in the first rankine cycle system and evaporation of the second working fluid in the second rankine cycle system.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: October 22, 2013
    Assignee: General Electric Company
    Inventors: Gabor Ast, Michael Adam Bartlett, Thomas Johannes Frey, Matthew Alexander Lehar
  • Publication number: 20130247570
    Abstract: A waste heat recovery system includes a heat recovery cycle system coupled to at least two separate heat sources having different temperatures. The heat recovery cycle system is coupled to a first heat source and at least one second heat source. The heat recovery cycle system is configured to circulate a working fluid. The at least one second heat source includes a lower temperature heat source than the first heat source. The working fluid is circulatable in heat exchange relationship through a first heat exchange unit, a second heat exchange unit for heating the working fluid in the heat recovery cycle system. The first heat exchange unit is coupled to the at least one second heat source to heat at least a portion of a cooled stream of working fluid to a substantially higher temperature.
    Type: Application
    Filed: March 24, 2012
    Publication date: September 26, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Alexander Lehar, Vittorio Michelassi
  • Patent number: 8511085
    Abstract: In one aspect, the present invention provides a direct evaporator apparatus for use in an organic Rankine cycle energy recovery system, comprising: (a) a housing comprising a heat source gas inlet, and a heat source gas outlet, the housing defining a heat source gas flow path from the inlet to the outlet; and (b) a heat exchange tube disposed within the heat source flow path, the heat exchange tube being configured to accommodate an organic Rankine cycle working fluid, the heat exchange tube comprising a working fluid inlet and a working fluid outlet. The direct evaporator apparatus is configured such that at least a portion of a heat source gas having contacted at least a portion of the heat exchange tube is in thermal contact with heat source gas entering the direct evaporator apparatus via the heat source gas inlet. An organic Rankine cycle energy recovery system and a method of energy recovery are also provided.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: August 20, 2013
    Assignee: General Electric Company
    Inventors: Thomas Johannes Frey, Matthew Alexander Lehar
  • Patent number: 8490397
    Abstract: A waste heat recovery system includes a Brayton cycle system having an heater configured to circulate carbon dioxide vapor in heat exchange relationship with a hot fluid to heat carbon dioxide vapor. A Rankine cycle system is coupled to the Brayton cycle system and configured to circulate a working fluid in heat exchange relationship with the carbon dioxide vapor to heat the working fluid.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: July 23, 2013
    Assignee: General Electric Company
    Inventor: Matthew Alexander Lehar
  • Patent number: 8459029
    Abstract: A rankine cycle system includes a heater configured to circulate a working fluid in heat exchange relationship with a hot fluid to vaporize the working fluid. A hot system is coupled to the heater. The hot system includes a first heat exchanger configured to circulate a first vaporized stream of the working fluid from the heater in heat exchange relationship with a first condensed stream of the working fluid to heat the first condensed stream of the working fluid. A cold system is coupled to the heater and the hot system. The cold system includes a second heat exchanger configured to circulate a second vaporized stream of the working fluid from the first system in heat exchange relationship with a second condensed stream of the working fluid to heat the second condensed stream of the working fluid before being fed to the heater.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: June 11, 2013
    Assignee: General Electric Company
    Inventor: Matthew Alexander Lehar
  • Publication number: 20130133868
    Abstract: Systems and methods include heat exchangers using Organic Rankine Cycle (ORC) fluids in power generation systems. A system for power generation using an ORC comprises: a heat exchanger configured to be mounted entirely inside a duct, the heat exchanger comprising a single inlet which traverses from an outer side of the duct to an inner side of the duct, a single outlet which traverses from the inner side of the duct to the outer side of the duct, and a conduit connecting the single inlet to the single outlet, the conduit being provided entirely inside the duct.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 30, 2013
    Inventors: Matthew Alexander Lehar, Sebastian Walter Freund, Giulio De Simon, Giacomo Seghi
  • Publication number: 20120251898
    Abstract: A system and method are provided for boosting overall performance of a fuel cell while simultaneously separating a nearly pure stream of CO2 for sequestration or for use in generating electrical power to further increase overall efficiency of the process. The system and method employ a heat exchanger system configured to generate a stream of fuel that is returned to the inlet of the fuel cell anode with a higher molar concentration of carbon monoxide (CO) and hydrogen (H2) fuel than was initially present in the fuel cell anode outlet.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Alexander Lehar, Andrew Philip Shapiro, Bruce Philip Biederman, Vitali Victor Lissianski, Andrew Maxwell Peter, Matthew Joseph Alinger, Laura Michele Hudy, Roger Allen Shisler
  • Publication number: 20120251899
    Abstract: A combined cycle fuel cell includes a fuel cell such as a solid-oxide fuel cell (SOFC) comprising an anode that generates a tail gas. A hydrocarbon fuel reforming system that mixes a hydrocarbon fuel with the fuel cell tail gas downstream of the fuel cell partly or fully converts the hydrocarbon fuel into hydrogen (H2) and carbon monoxide (CO). A fuel path diverts a first portion of the reformed fuel to the inlet of the fuel cell anode. A cooler such as an Organic Rankine cycle (ORC) is optionally configured to remove heat from a residual portion of the reformed fuel and to deliver the cooled residual portion of the reformed fuel to a bottoming cycle that may be an external or internal combustion engine such as a reciprocating gas engine or gas turbine that is driven in response to the cooled residual portion of the reformed fuel.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Alexander Lehar, Andrew Philip Shapiro, Bruce Philip Biederman, Matthew Joseph Alinger
  • Patent number: 8240149
    Abstract: An ORC system configured to limit temperature of a working fluid below a threshold temperature is provided. The ORC system includes a heat source configured to convey a waste heat fluid. The ORC system also includes a heat exchanger coupled to the heat source. The heat exchanger includes an evaporator configured to receive the waste heat fluid from the heat source and vaporize the working fluid, wherein the evaporator is further configured to allow heat exchange between the waste heat fluid and the vaporized working fluid at an elevated temperature and further produce an evaporator outlet flow including a lower temperature waste heat fluid.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: August 14, 2012
    Assignee: General Electric Company
    Inventors: Matthew Alexander Lehar, Sebastian W. Freund, Giacomo Seghi
  • Publication number: 20120174583
    Abstract: A rankine cycle system includes a heater configured to circulate a working fluid in heat exchange relationship with a hot fluid to vaporize the working fluid. A hot system is coupled to the heater. The hot system includes a first heat exchanger configured to circulate a first vaporized stream of the working fluid from the heater in heat exchange relationship with a first condensed stream of the working fluid to heat the first condensed stream of the working fluid. A cold system is coupled to the heater and the hot system. The cold system includes a second heat exchanger configured to circulate a second vaporized stream of the working fluid from the first system in heat exchange relationship with a second condensed stream of the working fluid to heat the second condensed stream of the working fluid before being fed to the heater.
    Type: Application
    Filed: September 28, 2009
    Publication date: July 12, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Matthew Alexander Lehar
  • Patent number: 8186161
    Abstract: A control system includes a temperature sensor communicatively coupled to an exit of an expander of an expansion system and configured to detect temperature of the working fluid flowing through the exit of the expander. A pressure sensor is communicatively coupled to the exit of the expander and configured to detect pressure of the working fluid flowing through the exit of the expander. A controller is configured to receive output signals from the temperature sensor and the pressure sensor and control operation of one or more components of the expansion system so as to control the thermodynamic conditions at the exit of the expander while driving a quality of vapor of the working fluid at the exit of the expander towards a predetermined degree of superheat.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: May 29, 2012
    Assignee: General Electric Company
    Inventors: Gabor Ast, Michael Adam Bartlett, Thomas Johannes Frey, Herbert Kopecek, Helge Burghard Herwig Klockow, Matthew Alexander Lehar
  • Publication number: 20120125002
    Abstract: A power generation system is provided. The system comprises a first Rankine cycle-first working fluid circulation loop comprising a heater, an expander, a heat exchanger, a recuperator, a condenser, a pump, and a first working fluid; integrated with a) a second Rankine cycle-second working fluid circulation loop comprising a heater, an expander, a condenser, a pump, and a second working fluid comprising an organic fluid; and b) an absorption chiller cycle comprising a third working fluid circulation loop comprising an evaporator, an absorber, a pump, a desorber, a condenser, and a third working fluid comprising a refrigerant. In one embodiment, the first working fluid comprises CO2. In one embodiment, the first working fluid comprises helium, air, or nitrogen.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 24, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Alexander Lehar, Sebastian Walter Freund, Thomas Johannes Frey, Gabor Ast, Pierre Sebastien Huck, Monika Muehlbauer
  • Publication number: 20120023943
    Abstract: The present invention provides an organic Rankine cycle energy recovery system comprising features which provide for fire suppression and/or ignition suppression in the event of an unintentional release of a flammable component of the system, for example a flammable working fluid such as cyclopentane, into a part of the of the system in which the prevailing temperature is higher than the autoignition temperature of the flammable component. In one embodiment, and the organic Rankine cycle energy recovery system comprises an inert gas source disposed upstream of a hydrocarbon evaporator and configured to purge the hydrocarbon evaporator with an inert gas on detection of a leak thereby.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sebastian W. Freund, Matthew Alexander Lehar, Thomas Johannes Frey, Gabor Ast, Pierre Sebastien Huck
  • Publication number: 20120000200
    Abstract: In one embodiment, a system includes a valve system switchable between a waste heat recovery position configured to direct incoming exhaust gas through an interior volume of an exhaust section of an engine and a bypass position configured to direct the incoming exhaust gas through a bypass duct to bypass a heat recovery boiler disposed within the interior volume. The system also includes an inert gas purging system configured to inject an inert gas into the interior volume to displace residual exhaust gas from the interior volume.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: General Electric Company
    Inventors: Sebastian W. Freund, Herbert Kopecek, Matthew Alexander Lehar, Pierre Sébastien Huck, Albert Andreas Scharl, Mario Martini, Paolo Castellani, Gabor Ast, Thomas Johannes Frey, Giacomo Seghi, Vincenzo Amato, Mauro Cappelli, Stefano Bartolozzi
  • Publication number: 20110143175
    Abstract: A method for providing auxiliary electrical power to an underwater well installation, the installation being linked to a surface location via an umbilical cable, to supplement any electrical power received at the installation from the umbilical cable, comprises the steps of: providing power generation means at the installation; and providing an electrical power output line for transferring electrical power generated by the power generation means to the installation.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 16, 2011
    Inventors: Parag Vyas, Matthew Alexander Lehar, Ashalatha Devarajan, Peter John Davey, Nicholas Ellson
  • Publication number: 20110120129
    Abstract: In one aspect, the present invention provides a direct evaporator apparatus for use in an organic Rankine cycle energy recovery system, comprising: (a) a housing comprising a heat source gas inlet, and a heat source gas outlet, the housing defining a heat source gas flow path from the inlet to the outlet; and (b) a heat exchange tube disposed within the heat source flow path, the heat exchange tube being configured to accommodate an organic Rankine cycle working fluid, the heat exchange tube comprising a working fluid inlet and a working fluid outlet. The direct evaporator apparatus is configured such that at least a portion of a heat source gas having contacted at least a portion of the heat exchange tube is in thermal contact with heat source gas entering the direct evaporator apparatus via the heat source gas inlet. An organic Rankine cycle energy recovery system and a method of energy recovery are also provided.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Thomas Johannes Frey, Matthew Alexander Lehar
  • Publication number: 20110113780
    Abstract: A waste heat recovery system includes a Brayton cycle system having an heater configured to circulate carbon dioxide vapor in heat exchange relationship with a hot fluid to heat carbon dioxide vapor. A Rankine cycle system is coupled to the Brayton cycle system and configured to circulate a working fluid in heat exchange relationship with the carbon dioxide vapor to heat the working fluid.
    Type: Application
    Filed: November 16, 2009
    Publication date: May 19, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Matthew Alexander Lehar
  • Publication number: 20110100009
    Abstract: Systems and methods include heat exchangers using Organic Rankine Cycle (ORC) fluids in power generation systems. The system includes a heat exchanger configured to be mounted inside an exhaust stack that guides hot flue gases and having an inlet and an outlet, the heat exchanger being configured to receive a liquid stream of a first fluid through the inlet and to generate a vapor stream of the first fluid and the heat exchanger is configured to include a double walled pipe, where the first fluid is disposed within an inner wall of the double walled pipe and a second fluid is disposed between the inner wall and an outer wall of the double walled pipe.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Applicant: NUOVO PIGNONE S.P.A.
    Inventors: Matthew Alexander Lehar, Thomas Frey, Gabor Ast, Sebastian Freund, Richard Aumann
  • Publication number: 20110061388
    Abstract: In one aspect of the present invention provides a direct evaporator apparatus for use in an organic Rankine cycle energy recovery system, comprising: (a) a housing comprising a heat source gas inlet, and a heat source gas outlet, said housing defining a heat source gas flow path from said inlet to said outlet; and (b) a heat exchange tube disposed entirely within said heat source flow path, said heat exchange tube being configured to accommodate an organic Rankine cycle working fluid, said heat exchange tube comprising a working fluid inlet and a working fluid outlet, said heat exchange tube defining three zones, a first zone adjacent to said heat source gas outlet, a second zone adjacent to said heat source gas inlet, and a third zone disposed between said first zone and said second zone, said working fluid inlet being in direct fluid communication with said first zone, and said working fluid outlet being in direct fluid communication with said third zone; wherein said first zone is not in direct fluid commu
    Type: Application
    Filed: September 15, 2009
    Publication date: March 17, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Alexander Lehar, Sebastian W. Freund, Thomas Johannes Frey, Richard Aumann, Gabor Ast