Patents by Inventor Matthew B. Scudiere
Matthew B. Scudiere has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10743776Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.Type: GrantFiled: May 13, 2019Date of Patent: August 18, 2020Assignee: MAJELCO MEDICAL, INC.Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara M. Brewer Cates, Adan James Akerman, Annette MacIntyre
-
Patent number: 10690684Abstract: A system for measuring the blood loss comprises a measuring device that determines the hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, the hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.Type: GrantFiled: October 11, 2018Date of Patent: June 23, 2020Assignees: Majelco Medical, Inc., University of Utah Research FoundationInventors: Annette Macintyre, Lara Brewer Cates, Suzanne Wendelken, Quinn Tate, Soeren Hoehne, Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Adan James Akerman
-
Publication number: 20190261868Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector, The container receives blood and other fluids from a patient during a medical procedure, Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.Type: ApplicationFiled: May 13, 2019Publication date: August 29, 2019Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara M. Brewer Cates, Adan James Akerman, Annette MacIntyre
-
Patent number: 10285596Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.Type: GrantFiled: April 11, 2017Date of Patent: May 14, 2019Assignee: MAJELCO MEDICAL, INC.Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara Brewer, Adan James Akerman
-
Publication number: 20190041405Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.Type: ApplicationFiled: October 11, 2018Publication date: February 7, 2019Inventors: Annette Macintyre, Lara Brewer, Suzanne Wendelken, Quinn Tate, Soeren Hoehne, Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Adan James Akerman
-
Publication number: 20170290518Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.Type: ApplicationFiled: April 11, 2017Publication date: October 12, 2017Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara Brewer, Adan James Akerman
-
Patent number: 8310202Abstract: A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.Type: GrantFiled: August 17, 2010Date of Patent: November 13, 2012Assignee: UT-Battelle, LLCInventor: Matthew B. Scudiere
-
Publication number: 20120043930Abstract: A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.Type: ApplicationFiled: August 17, 2010Publication date: February 23, 2012Applicant: UT-BATTELLE, LLCInventor: Matthew B. Scudiere
-
Patent number: 7375293Abstract: A weigh-in-motion device and method having at least one transducer pad, each transducer pad having at least one transducer group with transducers positioned essentially perpendicular to the direction of travel. At least one pad microcomputer is provided on each transducer pad having a means for calculating first output signal indicative of weight, second output signal indicative of time, and third output signal indicative of speed. At least one host microcomputer is in electronic communication with each pad microcomputer, and having a means for calculating at least one unknown selected from the group consisting of individual tire weight, individual axle weight, axle spacing, speed profile, longitudinal center of balance, and transverse center of balance.Type: GrantFiled: October 18, 2006Date of Patent: May 20, 2008Assignee: UT-Battelle, LLCInventors: David L. Beshears, Matthew B. Scudiere, Clifford P. White
-
Patent number: 7305324Abstract: An asset identification and information infrastructure management (AI3M) device having an automated identification technology system (AIT), a Transportation Coordinators' Automated Information for Movements System II (TC-AIMS II), a weigh-in-motion system (WIM-II), and an Automated Air Load Planning system (AALPS) all in electronic communication for measuring and calculating actual asset characteristics, either statically or in-motion, and further calculating an actual load plan.Type: GrantFiled: November 24, 2004Date of Patent: December 4, 2007Assignee: UT-Battelle, LLCInventors: David L. Beshears, Stephen G. Batsell, Robert K. Abercrombie, Matthew B. Scudiere, Clifford P. White
-
Patent number: 6459050Abstract: An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.Type: GrantFiled: September 20, 1999Date of Patent: October 1, 2002Assignee: UT-Battelle, Inc.Inventors: Jeffrey D. Muhs, Matthew B. Scudiere, John K. Jordan
-
Patent number: 5998741Abstract: This system and method of operation weighs and characterizes a moving vehicle traveling on a roadway. The moving vehicle travels across a weight transducer and first and second switching devices. The transducer provides a first set of output signals indicative of vehicle tire loading. The switching devices provide second output signals indicative of vehicle speed and characterization. Processor means receive the first and second output signals and characterize the vehicle; calculate the vehicle speed and calculate the vehicle weight by integrating the second output signals and combining with the vehicle speed.Type: GrantFiled: April 29, 1999Date of Patent: December 7, 1999Assignee: Lockheed Martin Energy Research Corp.Inventors: David L. Beshears, Gary J. Capps, John K. Jordan, John V. LaForge, Jeffrey D. Muhs, Robert N. Nodine, Matthew B. Scudiere, Cliff P. White
-
Patent number: 5959259Abstract: This system and method of operation weighs and characterizes a moving vehicle traveling on a roadway. The moving vehicle travels across a weight transducer and first and second switching devices. The transducer provides a first set of output signals indicative of vehicle tire loading. The switching devices provide second output signals indicative of vehicle speed and characterization. Processor means receive the first and second output signals and characterize the vehicle; calculate the vehicle speed and calculate the vehicle weight by integrating the second output signals and combining with the vehicle speed.Type: GrantFiled: March 11, 1997Date of Patent: September 28, 1999Assignee: Lockheed Martin Energy Research CorporationInventors: David L. Beshears, Gary J. Capps, John K. Jordan, John V. LaForge, Jeffrey D. Muhs, Robert N. Nodine, Matthew B. Scudiere, Cliff P. White
-
Patent number: 5642273Abstract: A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.Type: GrantFiled: September 30, 1994Date of Patent: June 24, 1997Assignee: Martin Marietta Energy Systems, Inc.Inventors: Jih-Sheng Lai, Robert W. Young, Sr., Daoshen Chen, Matthew B. Scudiere, George W. Ott, Jr., Clifford P. White, John W. McKeever
-
Patent number: 5184189Abstract: A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.Type: GrantFiled: May 29, 1991Date of Patent: February 2, 1993Assignee: The United States of Americas as represented by the United States Department of EnergyInventors: Robert A. Hawsey, Matthew B. Scudiere