Patents by Inventor Matthew Babicki

Matthew Babicki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230010933
    Abstract: Disclosed herein is a method for making hydrogen with carbon sequestration. The method may comprise using a biomass hydroconverter product to fuel a steam reformer that converts a hydrocarbon fuel stream into a gas mixture that contains at least hydrogen and carbon dioxide. The gas stream is separated to form a hydrogen-enriched gas stream and at least one hydrogen-depleted stream. The hydrogen-depleted stream may be stored or further processed to sequester the carbon contained therein. Additionally, or alternatively, the solid residue from the biomass hydroconverter also may be stored for further sequester carbon generated by the method.
    Type: Application
    Filed: September 16, 2022
    Publication date: January 12, 2023
    Applicant: G4 Insights Inc.
    Inventors: Matthew Babicki, Edson Ng
  • Patent number: 8152476
    Abstract: The present invention relates to positive displacement pumps, and particularly to diaphragm positive displacement pumps. An inventive diaphragm positive displacement pump is provided comprising at least one pumping chamber containing a deformable hose diaphragm, a working fluid cylinder fluidly connected to the deformable hose diaphragm, and at least one linear motor to displace the working fluid within the working fluid cylinder and thereby increase and decrease the volume of the pumping chamber. An inventive method of controlling an inventive diaphragm positive displacement pump comprising at least one pumping chamber and powered by at least one linear motor is also provided.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: April 10, 2012
    Assignee: Toyo Pumps North America Corp.
    Inventors: Matthew Babicki, Steven Noble
  • Publication number: 20090053074
    Abstract: The present invention relates to positive displacement pumps, and particularly to diaphragm positive displacement pumps. An inventive diaphragm positive displacement pump is provided comprising at least one pumping chamber containing a deformable hose diaphragm, a working fluid cylinder fluidly connected to the deformable hose diaphragm, and at least one linear motor to displace the working fluid within the working fluid cylinder and thereby increase and decrease the volume of the pumping chamber. An inventive method of controlling an inventive diaphragm positive displacement pump comprising at least one pumping chamber and powered by at least one linear motor is also provided.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Inventors: Matthew Babicki, Steven Noble
  • Publication number: 20080090113
    Abstract: Enhanced high temperature fuel cell systems, such as solid oxide fuel cell systems and molten carbonate fuel cell systems are disclosed. Embodiments of the disclosure include solid oxide and molten carbonate fuel cell systems incorporating gas separation apparati facilitating the recycle of hydrogen fuel from fuel cell anode exhaust for supply to the fuel cell anode inlet. Further embodiments of the disclosure include solid oxide and molten carbonate fuel cell systems incorporating inventive combinations of anode materials conducive to combination with enriched hydrogen fuel. Other embodiments of the disclosure include gas separation apparati for providing enriched oxygen feed to the cathode inlet of solid oxide and molten carbonate fuel cells.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 17, 2008
    Inventors: Bowie Keefer, Matthew Babicki, Mark Kirby
  • Publication number: 20070261551
    Abstract: An inventive adsorptive gas separation process is provided capable of producing a purified methane product gas as a light non-adsorbed product gas as opposed to a heavy desorbed exhaust gas component, from a feed gas mixture comprising at least methane, and carbon dioxide. In an embodiment of the invention, the feed gas mixture may comprise at least about 10% carbon dioxide, and the purified methane product gas may be desirably purified to contain less than about 5000 ppm carbon dioxide. In another embodiment of the invention, the feed gas mixture may comprise at least about 50% carbon dioxide, and the purified methane product gas may be desirably purified to contain less than about 5000 ppm carbon dioxide.
    Type: Application
    Filed: November 7, 2005
    Publication date: November 15, 2007
    Inventors: James Sawada, Matthew Babicki, Amy Chiu, Andre Boulet, Surajit Roy, Edward Rode
  • Publication number: 20060169142
    Abstract: Improved adsorbent sheet based parallel passage adsorbent structures for enhancing the kinetic selectivity of certain kinetic-controlled adsorption processes, such as PSA, TSA and PPSA processes, and combinations thereof, are provided. The enhancements in kinetic selectivity made possible through the implementation of the present inventive improved adsorbent structures may unexpectedly enable significant intensification of selected kinetic adsorption processes relative to attainable performance with conventional adsorbent materials in beaded or extruded form. Such process intensification enabled by the present inventive adsorbent structures may provide for increased adsorption cycle frequencies, and increased gas flow velocities within the adsorbent beds, which may increase the productivity and/or recovery of a kinetic adsorption system incorporating the inventive adsorbent structures.
    Type: Application
    Filed: January 6, 2006
    Publication date: August 3, 2006
    Inventors: Edward Rode, Andre Boulet, Aaron Pelman, Matthew Babicki, Bowie Keefer, James Sawada, Soheil Alizadeh-Khiavi, Surajit Roy, Andrea Gibbs, Steven Kuznicki
  • Publication number: 20050183572
    Abstract: Gas separation by pressure swing adsorption (PSA) and vacuum pressure swing adsorption (VPSA), to obtain a purified product gas of the less strongly adsorbed fraction of the feed gas mixture, is performed with an apparatus having a plurality of adsorbers. The adsorbers cooperate with first and second valves in a rotary PSA module, with the PSA cycle characterized by multiple intermediate pressure levels between the higher and lower pressures of the PSA cycle. Gas flows enter or exit the PSA module at the intermediate pressure levels as well as the higher and lower pressure levels, under substantially steady conditions of flow and pressure. The PSA module may comprise a rotor containing laminated sheet adsorbers and rotating within a stator, with ported valve faces between the rotor and stator to control the timing of the flows entering or exiting the adsorbers in the rotor.
    Type: Application
    Filed: July 2, 2004
    Publication date: August 25, 2005
    Inventors: Bowie Keefer, Christopher McLean, Matthew Babicki
  • Patent number: 6565635
    Abstract: Disclosed embodiments of the apparatus address the challenges of rotary PSA systems, both axial and radial flow, with M>1 by providing interpenetrating, layered manifolds to accommodate all of the steps of a complex PSA cycle, suitable with equal compactness for any value of “M”. This approach extends readily to accommodate a plurality of rotary PSA modules and their cooperating compression machinery within a single layered manifold assembly for a single PSA plant train. Described embodiments of the rotary PSA apparatus include stators that define fluid ports. In particular embodiments of the described apparatus, a second stator defines pressure swing adsorption cycle sectors, each sector being defined by a light product delivery port, light product withdrawal ports, and light reflux return ports. The adsorber elements may directly contact one or more of the stators in a fluidly sealing manner (i.e., have a clearance gap of from about 0 to about 50 microns) using described reinforced adsorbers.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: May 20, 2003
    Assignee: QuestAir Technologies, Inc.
    Inventors: Bowie G. Keefer, Matthew Babicki, Brian Sellars, Ian Spencer Parker, David G. Doman, Alain Carel, Surajit Roy
  • Publication number: 20020066367
    Abstract: Disclosed embodiments of the apparatus address the challenges of rotary PSA systems, both axial and radial flow, with M>1 by providing interpenetrating, layered manifolds to accommodate all of the steps of a complex PSA cycle, suitable with equal compactness for any value of “M”. This approach extends readily to accommodate a plurality of rotary PSA modules and their cooperating compression machinery within a single layered manifold assembly for a single PSA plant train. Described embodiments of the rotary PSA apparatus include stators that define fluid ports. In particular embodiments of the described apparatus, a second stator defines pressure swing adsorption cycle sectors, each sector being defined by a light product delivery port, light product withdrawal ports, and light reflux return ports. The adsorber elements may directly contact one or more of the stators in a fluidly sealing manner (i.e., have a clearance gap of from about 0 to about 50 microns) using described reinforced adsorbers.
    Type: Application
    Filed: September 25, 2001
    Publication date: June 6, 2002
    Inventors: Bowie G. Keefer, Matthew Babicki, Brian Sellars, Ian Spencer Parker, David G. Doman, Alain Carel, Surajit Roy