Patents by Inventor Matthew BEARDSWORTH

Matthew BEARDSWORTH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11255892
    Abstract: A system may include a sensor having a variable phase response, a dummy impedance having a known phase response, and a measurement circuit communicatively coupled to the sensor and configured to measure first phase information associated with the sensor, measure second phase information associated with the dummy impedance, and determine a phase response of the measurement circuit based on a comparison of the first phase information to the second phase information.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: February 22, 2022
    Assignee: Cirrus Logic, Inc.
    Inventors: Tejasvi Das, Siddharth Maru, Xin Zhao, Matthew Beardsworth, Michael A. Kost, John L. Melanson
  • Publication number: 20220029617
    Abstract: A system may include a sensor configured to output a sensor signal indicative of a distance between the sensor and a mechanical member associated with the sensor, a measurement circuit communicatively coupled to the sensor and configured to determine a physical force interaction with the mechanical member based on the sensor signal, and a compensator configured to monitor the sensor signal and to apply a compensation factor to the sensor signal to compensate for changes to properties of the sensor based on at least one of changes in a distance between the sensor and the mechanical member and changes in a temperature associated with the sensor.
    Type: Application
    Filed: October 5, 2021
    Publication date: January 27, 2022
    Inventors: Matthew BEARDSWORTH, Tejasvi DAS, Siddharth MARU, Luke LAPOINTE
  • Publication number: 20210405840
    Abstract: A force sensing system for determining if a user input has occurred, the system comprising: an input channel, to receive an input from at least one force sensor; an activity detection stage, to monitor an activity level of the input from the at least one force sensor and, responsive to an activity level which may be indicative of a user input being reached, to generate an indication that an activity has occurred at the force sensor; and an event detection stage to receive said indication, and to determine if a user input has occurred based on the received input from the at least one force sensor.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Hamid SEPEHR, Pablo PESO PARADA, Willem ZWART, Tom BIRCHALL, Michael Allen KOST, Tejasvi DAS, Siddharth MARU, Matthew BEARDSWORTH, Bruce E. DUEWER
  • Publication number: 20210357062
    Abstract: A system may include a resistive-inductive-capacitive sensor, a driver configured to drive the resistive-inductive-capacitive sensor at a driving frequency, a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor and configured to measure phase information and amplitude associated with the resistive-inductive-capacitive sensor, and a noise detection circuit communicatively coupled to the measurement circuit and configured to determine a presence of external interference in the system based on at least one of the phase information and the amplitude information.
    Type: Application
    Filed: July 8, 2021
    Publication date: November 18, 2021
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Gregory C. YANCEY, Michael KOST, Tejasvi DAS, Siddharth MARU, Matthew BEARDSWORTH, Vadim KONRADI
  • Patent number: 11171641
    Abstract: A system may include a sensor configured to output a sensor signal indicative of a distance between the sensor and a mechanical member associated with the sensor, a measurement circuit communicatively coupled to the sensor and configured to determine a physical force interaction with the mechanical member based on the sensor signal, and a compensator configured to monitor the sensor signal and to apply a compensation factor to the sensor signal to compensate for changes to properties of the sensor based on at least one of changes in a distance between the sensor and the mechanical member and changes in a temperature associated with the sensor.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: November 9, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Matthew Beardsworth, Tejasvi Das, Siddharth Maru, Luke Lapointe
  • Publication number: 20210325265
    Abstract: The present disclosure relates to compensation circuitry for compensating for a thermal effect in an output signal output by a force sensor. The compensation circuitry comprises monitoring circuitry configured to monitor one or more electrical parameters of the resistive force sensor and processing circuitry. The processing circuitry is configured to determine an absolute resistance value for the force sensor based on the one or more monitored electrical parameters and to adjust one or more operational parameters of the force sensor system based at least in part on the determined absolute resistance value.
    Type: Application
    Filed: March 22, 2021
    Publication date: October 21, 2021
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Matthew BEARDSWORTH, Vadim KONRADI, Bill DIEHL
  • Patent number: 11150733
    Abstract: Embodiments described herein relate to methods and apparatuses for providing a haptic output signal to a haptic actuator. A controller comprises an input configured to receive a force sensor signal from at least one force sensor; and a haptic output module configured to generate a haptic output signal for output to a haptic actuator; wherein the haptic output module is configured to: responsive to determining that the force sensor signal indicates that a force level applied to the at least one force sensor exceeds a first threshold, trigger output of the haptic output signal; and during output of the haptic output signal, adjust the haptic output signal based on the force sensor signal.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: October 19, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Tejasvi Das, Michael A. Kost, Matthew Beardsworth
  • Patent number: 11093060
    Abstract: A system may include a resistive-inductive-capacitive sensor, a driver configured to drive the resistive-inductive-capacitive sensor at a driving frequency, a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor and configured to measure phase information and amplitude associated with the resistive-inductive-capacitive sensor, and a noise detection circuit communicatively coupled to the measurement circuit and configured to determine a presence of external interference in the system based on at least one of the phase information and the amplitude information.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: August 17, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Gregory C. Yancey, Michael Kost, Tejasvi Das, Siddharth Maru, Matthew Beardsworth, Vadim Konradi
  • Publication number: 20210200316
    Abstract: Embodiments described herein relate to methods and apparatuses for controlling an operation of a vibrational output system and/or an operation of an input sensor system, wherein the controller is for use in a device comprising the vibrational output system and the input sensor system. A controller comprises an input configured to receive an indication of activation or de-activation of an output of the vibrational output system; and an adjustment module configured to adjust the operation of the vibrational output system and/or the operation of the input sensor system based on the indication to reduce an interference expected to be caused by the output of the vibrational output system on the input sensory system.
    Type: Application
    Filed: March 3, 2021
    Publication date: July 1, 2021
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Tejasvi DAS, Matthew BEARDSWORTH, Michael A. KOST, Gavin MCVEIGH, Hamid SEPEHR, Carl L. STÅHL
  • Publication number: 20210152174
    Abstract: A method may include receiving an input signal, generating a baseline signal based on the input signal, generating a corrected input signal by subtracting the baseline signal from the input signal, determining a threshold level change of the input signal when the corrected input signal exceeds a level change threshold, and responsive to the threshold level change, updating the baseline signal to the level change threshold.
    Type: Application
    Filed: May 4, 2020
    Publication date: May 20, 2021
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Gregory C. YANCEY, Rahul GAWDE, Matthew BEARDSWORTH, Michael A. KOST, Junsong LI
  • Publication number: 20210140797
    Abstract: A system may include at least one resistive-inductive-capacitive sensor and a control circuit configured to maintain timing parameters for operation of the at least one resistive-inductive-capacitive sensor and vary at least one of the timing parameters to control a spectrum associated with the at least one resistive-inductive-capacitive sensor, wherein the spectrum comprises one of a sensor activity spectrum of the at least one resistive-inductive-capacitive sensor and a current usage spectrum associated with electrical current delivered to the at least one resistive-inductive-capacitive sensor from a source of electrical energy.
    Type: Application
    Filed: January 25, 2021
    Publication date: May 13, 2021
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Michael A. KOST, Bruce E. DUEWER, Tejasvi DAS, Matthew BEARDSWORTH, Anthony S. DOY
  • Patent number: 10976825
    Abstract: Embodiments described herein relate to methods and apparatuses for controlling an operation of a vibrational output system and/or an operation of an input sensor system, wherein the controller is for use in a device comprising the vibrational output system and the input sensor system. A controller comprises an input configured to receive an indication of activation or de-activation of an output of the vibrational output system; and an adjustment module configured to adjust the operation of the vibrational output system and/or the operation of the input sensor system based on the indication to reduce an interference expected to be caused by the output of the vibrational output system on the input sensory system.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: April 13, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Tejasvi Das, Matthew Beardsworth, Michael Allan Kost, Gavin McVeigh, Hamid Sepehr, Carl L. Ståhl
  • Patent number: 10948313
    Abstract: A system may include at least one resistive-inductive-capacitive sensor and a control circuit configured to maintain timing parameters for operation of the at least one resistive-inductive-capacitive sensor and vary at least one of the timing parameters to control a spectrum associated with the at least one resistive-inductive-capacitive sensor, wherein the spectrum comprises one of a sensor activity spectrum of the at least one resistive-inductive-capacitive sensor and a current usage spectrum associated with electrical current delivered to the at least one resistive-inductive-capacitive sensor from a source of electrical energy.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: March 16, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Michael A. Kost, Bruce E. Duewer, Tejasvi Das, Matthew Beardsworth, Anthony S. Doy
  • Patent number: 10935620
    Abstract: A system may include a resistive-inductive-capacitive sensor, a driver configured to drive the resistive-inductive-capacitive sensor with a driving signal at a driving frequency, and a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor and configured to, during a calibration phase of the measurement circuit, measure phase and amplitude information associated with the resistive-inductive-capacitive sensor and based on the phase and amplitude information, determine at least one of a resonant frequency of the resistive-inductive-capacitive sensor and a transfer function of the resistive-inductive-capacitive sensor.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: March 2, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Tejasvi Das, Siddharth Maru, Matthew Beardsworth, Bruce E. Duewer, Michael A. Kost
  • Patent number: 10921159
    Abstract: A system may include a first resistive-inductive-capacitive sensor, a second resistive-inductive-capacitive sensor, and a measurement circuit communicatively coupled to the first resistive-inductive-capacitive sensor and the second resistive-inductive-capacitive sensor and configured to measure first phase information associated with the first resistive-inductive-capacitive sensor, measure second phase information associated with the second resistive-inductive-capacitive sensor, and based on the first phase information and the second phase information, determine a displacement of a mechanical member relative to the first resistive-inductive-capacitive sensor.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: February 16, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Tejasvi Das, Zhong You, Siddharth Maru, Eric J. King, Johann G. Gaboriau, Luke Lapointe, Matthew Beardsworth
  • Publication number: 20210034213
    Abstract: A force sensing system for determining if a user input has occurred, the system comprising: an input channel, to receive an input from at least one force sensor; an activity detection stage, to monitor an activity level of the input from the at least one force sensor and, responsive to an activity level which may be indicative of a user input being reached, to generate an indication that an activity has occurred at the force sensor; and an event detection stage to receive said indication, and to determine if a user input has occurred based on the received input from the at least one force sensor.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 4, 2021
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Hamid SEPEHR, Pablo PESO PARADA, Willem ZWART, Tom BIRCHALL, Michael Allen KOST, Tejasvi DAS, Siddharth MARU, Matthew BEARDSWORTH, Bruce E. DUEWER
  • Patent number: 10908200
    Abstract: A system may include a resistive-inductive-capacitive sensor, a driver configured to drive the resistive-inductive-capacitive sensor at a driving frequency, and a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor and configured to measure phase information associated with the resistive-inductive-capacitive sensor and based on the phase information, determine a displacement of a mechanical member relative to the resistive-inductive-capacitive sensor, wherein the displacement of the mechanical member causes a change in an impedance of the resistive-inductive-capacitive sensor.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: February 2, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Zhong You, Siddharth Maru, Tejasvi Das, Luke Lapointe, Eric J. King, Anthony S. Doy, Srdjan Marjianovic, Drew Kinney, Matthew Beardsworth, Emmanuel Marchais
  • Publication number: 20200386804
    Abstract: A system may include a sensor having a variable phase response, a dummy impedance having a known phase response, and a measurement circuit communicatively coupled to the sensor and configured to measure first phase information associated with the sensor, measure second phase information associated with the dummy impedance, and determine a phase response of the measurement circuit based on a comparison of the first phase information to the second phase information.
    Type: Application
    Filed: October 21, 2019
    Publication date: December 10, 2020
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Tejasvi DAS, Siddharth MARU, Xin ZHAO, Matthew BEARDSWORTH, Michael A. KOST, John L. MELANSON
  • Publication number: 20200387224
    Abstract: Embodiments described herein relate to methods and apparatuses for controlling an operation of a vibrational output system and/or an operation of an input sensor system, wherein the controller is for use in a device comprising the vibrational output system and the input sensor system. A controller comprises an input configured to receive an indication of activation or de-activation of an output of the vibrational output system; and an adjustment module configured to adjust the operation of the vibrational output system and/or the operation of the input sensor system based on the indication to reduce an interference expected to be caused by the output of the vibrational output system on the input sensory system.
    Type: Application
    Filed: October 22, 2019
    Publication date: December 10, 2020
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Tejasvi DAS, Matthew BEARDSWORTH, Michael Allan KOST, Gavin MCVEIGH, Hamid SEPEHR, Carl Lennart STÅHL
  • Publication number: 20200387225
    Abstract: Embodiments described herein relate to methods and apparatuses for providing a haptic output signal to a haptic actuator. A controller comprises an input configured to receive a force sensor signal from at least one force sensor; and a haptic output module configured to generate a haptic output signal for output to a haptic actuator; wherein the haptic output module is configured to: responsive to determining that the force sensor signal indicates that a force level applied to the at least one force sensor exceeds a first threshold, trigger output of the haptic output signal; and during output of the haptic output signal, adjust the haptic output signal based on the force sensor signal.
    Type: Application
    Filed: October 23, 2019
    Publication date: December 10, 2020
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Tejasvi DAS, Michael A. KOST, Matthew BEARDSWORTH