Patents by Inventor Matthew C. Gwinn

Matthew C. Gwinn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10861674
    Abstract: An apparatus and method for processing a workpiece with a beam is described. The apparatus includes a vacuum chamber having a beam-line for forming a particle beam and treating a workpiece with the particle beam, and a scanner for translating the workpiece through the particle beam. The apparatus further includes a scanner control circuit coupled to the scanner, and configured to control a scan property of the scanner, and a beam control circuit coupled to at least one beam-line component, and configured to control the beam flux of the particle beam according to a duty cycle for switching between at least two different states during processing.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: December 8, 2020
    Assignee: TEL Epion Inc.
    Inventors: Matthew C. Gwinn, Martin D. Tabat, Kenneth Regan, Allen J. Leith, Michael Graf
  • Publication number: 20200066485
    Abstract: An apparatus and method for processing a workpiece with a beam is described. The apparatus includes a vacuum chamber having a beam-line for forming a particle beam and treating a workpiece with the particle beam, and a scanner for translating the workpiece through the particle beam. The apparatus further includes a scanner control circuit coupled to the scanner, and configured to control a scan property of the scanner, and a beam control circuit coupled to at least one beam-line component, and configured to control the beam flux of the particle beam according to a duty cycle for switching between at least two different states during processing.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: Matthew C. Gwinn, Martin D. Tabat, Kenneth Regan, Allen J. Leith, Michael Graf
  • Patent number: 10497540
    Abstract: An apparatus and method for processing a workpiece with a beam is described. The apparatus includes a vacuum chamber having a beam-line for forming a particle beam and treating a workpiece with the particle beam, and a scanner for translating the workpiece through the particle beam. The apparatus further includes a scanner control circuit coupled to the scanner, and configured to control a scan property of the scanner, and a beam control circuit coupled to at least one beam-line component, and configured to control the beam flux of the particle beam according to a duty cycle for switching between at least two different states during processing.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: December 3, 2019
    Assignee: TEL Epion Inc.
    Inventors: Matthew C. Gwinn, Martin D. Tabat, Kenneth Regan, Allen J. Leith, Michael Graf
  • Publication number: 20180197715
    Abstract: An apparatus and method for processing a workpiece with a beam is described. The apparatus includes a vacuum chamber having a beam-line for forming a particle beam and treating a workpiece with the particle beam, and a scanner for translating the workpiece through the particle beam. The apparatus further includes a scanner control circuit coupled to the scanner, and configured to control a scan property of the scanner, and a beam control circuit coupled to at least one beam-line component, and configured to control the beam flux of the particle beam according to a duty cycle for switching between at least two different states during processing.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 12, 2018
    Inventors: Matthew C. Gwinn, Martin D. Tabat, Kenneth Regan, Allen J. Leith, Michael Graf
  • Patent number: 9735019
    Abstract: A beam processing system and method of operating are described. In particular, the beam processing system includes a beam source having a nozzle assembly that is configured to introduce a primary gas through the nozzle assembly to a vacuum vessel in order to produce a gaseous beam, such as a gas cluster beam, and optionally, an ionizer positioned downstream from the nozzle assembly, and configured to ionize the gaseous beam to produce an ionized gaseous beam. The beam processing system further includes a process chamber within which a substrate is positioned for treatment by the gaseous beam, and a secondary gas source, wherein the secondary gas source includes a secondary gas supply system that delivers a secondary gas, and a secondary gas controller that operatively controls the flow of the secondary gas injected into the beam processing system downstream of the nozzle assembly.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: August 15, 2017
    Assignee: TEL Epion Inc.
    Inventors: Michael Graf, Noel Russell, Matthew C. Gwinn, Allen J. Leith
  • Patent number: 9343259
    Abstract: A nozzle assembly used for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the nozzle assembly includes two or more conical nozzles that are aligned such that they are both used to generate the same GCIB. The first conical nozzle may include the throat that initially forms the GCIB and the second nozzle may form a larger conical cavity that may be appended to the first conical nozzle. A transition region may be disposed between the two conical nozzles that may substantially cylindrical and slightly larger than the largest diameter of the first conical nozzle.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: May 17, 2016
    Assignee: TEL Epion Inc.
    Inventors: Matthew C. Gwinn, Avrum Freytsis, Robert K. Becker
  • Publication number: 20160071734
    Abstract: A beam processing system and method of operating are described. In particular, the beam processing system includes a beam source having a nozzle assembly that is configured to introduce a primary gas through the nozzle assembly to a vacuum vessel in order to produce a gaseous beam, such as a gas cluster beam, and optionally, an ionizer positioned downstream from the nozzle assembly, and configured to ionize the gaseous beam to produce an ionized gaseous beam. The beam processing system further includes a process chamber within which a substrate is positioned for treatment by the gaseous beam, and a secondary gas source, wherein the secondary gas source includes a secondary gas supply system that delivers a secondary gas, and a secondary gas controller that operatively controls the flow of the secondary gas injected into the beam processing system downstream of the nozzle assembly.
    Type: Application
    Filed: September 1, 2015
    Publication date: March 10, 2016
    Inventors: Michael Graf, Noel Russell, Matthew C. Gwinn, Allen J. Leith
  • Publication number: 20160042909
    Abstract: A nozzle assembly used for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the nozzle assembly includes two or more conical nozzles that are aligned such that they are both used to generate the same GCIB. The first conical nozzle may include the throat that initially forms the GCIB and the second nozzle may form a larger conical cavity that may be appended to the first conical nozzle. A transition region may be disposed between the two conical nozzles that may substantially cylindrical and slightly larger than the largest diameter of the first conical nozzle.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 11, 2016
    Inventors: Matthew C. Gwinn, Avrum Freytsis, Robert K. Becker
  • Patent number: 9236221
    Abstract: A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the GCIB etch processing includes using one or more molecular beams to optimize pressure at localized regions of the ion beam.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: January 12, 2016
    Assignee: TEL Epion Inc.
    Inventor: Matthew C. Gwinn
  • Publication number: 20150144786
    Abstract: A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the GCIB etch processing includes using one or more molecular beams to optimize pressure at localized regions of the ion beam.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 28, 2015
    Inventor: Matthew C. Gwinn
  • Patent number: 9029808
    Abstract: Disclosed are an apparatus, system, and method for scanning a substrate or other workpiece through a gas-cluster ion beam (GCIB), or any other type of ion beam. The workpiece scanning apparatus is configured to receive and hold a substrate for irradiation by the GCIB and to scan it through the GCIB in two directions using two movements: a reciprocating fast-scan movement, and a slow-scan movement. The slow-scan movement is actuated using a servo motor and a belt drive system, the belt drive system being configured to reduce the failure rate of the workpiece scanning apparatus. The apparatus further includes shields and other features for reducing process contamination resulting from scattering of the GCIB from the scanning apparatus.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: May 12, 2015
    Assignee: TEL Epion Inc.
    Inventors: Matthew C. Gwinn, Avrum Freytsis, Jerry Negrotti, Robert K. Becker
  • Patent number: 8981322
    Abstract: Disclosed is a multi-nozzle and skimmer assembly for introducing a process gas mixture, or multiple process gases mixtures, in a gas cluster ion beam (GCIB) system, and associated methods of operation to grow, modify, deposit, or dope a layer upon a substrate. The multiple nozzle and skimmer assembly includes at least two nozzles arranged in mutual close proximity to at least partially coalesce the gas cluster beams emitted therefrom into a single gas cluster beam and/or angled to converge each beam toward a single intersecting point to form a set of intersecting gas cluster beams, and to direct the single and/or intersecting gas cluster beam into a gas skimmer.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: March 17, 2015
    Assignee: TEL Epion Inc.
    Inventors: Martin D. Tabat, Matthew C. Gwinn, Robert K. Becker, Avrum Freytsis, Michael Graf
  • Publication number: 20140332696
    Abstract: Disclosed are an apparatus, system, and method for scanning a substrate or other workpiece through a gas-cluster ion beam (GCIB), or any other type of ion beam. The workpiece scanning apparatus is configured to receive and hold a substrate for irradiation by the GCIB and to scan it through the GCIB in two directions using two movements: a reciprocating fast-scan movement, and a slow-scan movement. The slow-scan movement is actuated using a servo motor and a belt drive system, the belt drive system being configured to reduce the failure rate of the workpiece scanning apparatus. The apparatus further includes shields and other features for reducing process contamination resulting from scattering of the GCIB from the scanning apparatus.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Inventors: Matthew C. GWINN, Avrum FREYTSIS
  • Patent number: 8791430
    Abstract: Disclosed are an apparatus, system, and method for scanning a substrate or other workpiece through a gas-cluster ion beam (GCIB), or any other type of ion beam. The workpiece scanning apparatus is configured to receive and hold a substrate for irradiation by the GCIB and to scan it through the GCIB in two directions using two movements: a reciprocating fast-scan movement, and a slow-scan movement. The slow-scan movement is actuated using a servo motor and a belt drive system, the belt drive system being configured to reduce the failure rate of the workpiece scanning apparatus.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: July 29, 2014
    Assignee: TEL Epion Inc.
    Inventors: Matthew C. Gwinn, Avrum Freytsis, Jay R. Wallace
  • Patent number: 8304033
    Abstract: Disclosed are methods of operation to grow, modify, deposit, or dope a layer upon a substrate using a multi-nozzle and skimmer assembly for introducing a process gas mixture, or multiple process gases mixtures, in a gas cluster ion beam (GCIB) system. Also disclosed is a method of forming a shallow trench isolation (STI) structure on a substrate, for example, an SiO2 STI structure, using a multiple nozzle system with two separate gas supplies, for example providing a silicon-containing gas and an oxygen-containing gas.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: November 6, 2012
    Assignee: TEL Epion Inc.
    Inventors: Martin D. Tabat, Matthew C. Gwinn, Robert K. Becker, Avrum Freytsis, Michael Graf
  • Publication number: 20120223249
    Abstract: Disclosed are an apparatus, system, and method for scanning a substrate or other workpiece through a gas-cluster ion beam (GCIB), or any other type of ion beam. The workpiece scanning apparatus is configured to receive and hold a substrate for irradiation by the GCIB and to scan it through the GCIB in two directions using two movements: a reciprocating fast-scan movement, and a slow-scan movement. The slow-scan movement is actuated using a servo motor and a belt drive system, the belt drive system being configured to reduce the failure rate of the workpiece scanning apparatus.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Applicant: TEL EPION Inc.
    Inventors: Matthew C. GWINN, Avrum FREYTSIS, Jay R. WALLACE
  • Patent number: 8097860
    Abstract: A gas cluster ion beam (GCIB) processing system using multiple nozzles for forming and emitting at least one GCIB and methods of operating thereof are described. The GCIB processing system may be configured to treat a substrate, including, but not limited to, doping, growing, depositing, etching, smoothing, amorphizing, or modifying a layer thereupon. Furthermore, the GCIB processing system may be operated to produce a first GCIB and a second GCIB, and to irradiate a substrate simultaneously and/or sequentially with the first GCIB and second GCIB.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: January 17, 2012
    Assignee: TEL Epion Inc.
    Inventors: Martin D. Tabat, Matthew C. Gwinn, Robert K. Becker, Avrum Freytsis, Michael Graf
  • Publication number: 20110240602
    Abstract: The invention includes a high-voltage gas cluster ion beam (GCIB) processing system for treating a workpiece using a gas cluster ion beam. The high-voltage GCIB processing system includes a high-voltage (HV) source system that includes a high-voltage (HV) source chamber having a high-voltage (HV) nozzle subassembly, a nozzle element, and a high-voltage (HV) skimmer subassembly therein. The high-voltage gas cluster ion beam (GCIB) processing system includes a high-voltage (HV) power supply coupled to the HV nozzle subassembly and the HV skimmer subassembly. A high-voltage (HV) ionization chamber can be coupled to the HV source chamber and can include an ionizer coupled to the chamber wall by an isolation structure. In addition, a grounded GCIB processing chamber can be coupled to the HV ionization chamber by an isolation structure and can include a scanable workpiece holder.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: TEL Epion Inc.
    Inventors: Robert K. Becker, Matthew C. Gwinn, Kenneth P. Regan
  • Patent number: 7825389
    Abstract: Methods and apparatus for controlling a gas cluster ion beam formed from a plurality of process gases in a gas mixture. The methods and apparatus involve measuring gas analysis data relating to the composition of the gas mixture and modifying the irradiation of the workpiece in response to the detected parameter. The gas analysis data can be derived from samples of the composition of the gas mixture flowing from a gas source to the gas cluster ion beam apparatus or samples of the residual gases inside the vacuum vessel of the gas cluster ion beam apparatus.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: November 2, 2010
    Assignee: TEL Epion Inc.
    Inventors: John J. Hautala, Matthew C. Gwinn, Jerald P. Dykstra
  • Publication number: 20100193472
    Abstract: A gas cluster ion beam (GCIB) processing system using multiple nozzles for forming and emitting at least one GCIB and methods of operating thereof are described. The GCIB processing system may be configured to treat a substrate, including, but not limited to, doping, growing, depositing, etching, smoothing, amorphizing, or modifying a layer thereupon. Furthermore, the GCIB processing system may be operated to produce a first GCIB and a second GCIB, and to irradiate a substrate simultaneously and/or sequentially with the first GCIB and second GCIB.
    Type: Application
    Filed: March 26, 2010
    Publication date: August 5, 2010
    Applicant: TEL EPION INC.
    Inventors: Martin D. Tabat, Matthew C. Gwinn, Robert K. Becker, Avrum Freytsis, Michael Graf