Patents by Inventor Matthew C Kirklin

Matthew C Kirklin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938835
    Abstract: A fuel cell system includes a fuel cell generator, a rechargeable energy storage circuit, an auxiliary load, a converter circuit, and a switch circuit. The fuel cell generator is operable to generate electrical power in a stack output signal. The auxiliary load is powered by the rechargeable energy storage circuit while in a first mode, and powered by a local signal while in a second mode. The converter circuit is operable to convert the stack output signal into a plurality of recharge signals while in the first mode and in the second mode, and convert the stack output signal into the local signal while in the second mode. The switch circuit is operable switch the plurality of recharge signals to one or more electric vehicles, and switch the local signal to the auxiliary load while in the second mode.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: March 26, 2024
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan B. Martin, Matthew C. Kirklin, Margarita M. Mann, William H. Pettit, Charles E. Freese, V
  • Patent number: 11888190
    Abstract: A distribution method and system for a plurality of fuel cell systems (FCSs) configured to provide electrical energy. The distribution being configured for determining a demand of a load for the electrical energy and correspondingly implementing a powering operation. The powering operation executing a startup operation according to a startup order specified for one or more secondary FCSs of the FCSs. The powering operation including individually performing the startup operations for each of the secondary FCSs according to the startup order, and while each of the second FCSs are performing the startup operation, controlling another one or more of the FCSs to mask a power variance associated therewith.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: January 30, 2024
    Assignee: GM Global Technology Operations LLC
    Inventors: Matthew C. Kirklin, Alan B. Martin, Biju Edamana
  • Publication number: 20230299320
    Abstract: A distribution method and system for a plurality of fuel cell systems (FCSs) configured to provide electrical energy. The distribution being configured for determining a demand of a load for the electrical energy and correspondingly implementing a powering operation. The powering operation executing a startup operation according to a startup order specified for one or more secondary FCSs of the FCSs. The powering operation including individually performing the startup operations for each of the secondary FCSs according to the startup order, and while each of the second FCSs are performing the startup operation, controlling another one or more of the FCSs to mask a power variance associated therewith.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 21, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Matthew C. Kirklin, Alan B. Martin, Biju Edamana
  • Patent number: 11731524
    Abstract: A system for matching a plurality of electrically powered vehicles to a plurality of available mobile chargers includes a computerized server device programmed to monitor optimization inputs related to the plurality of available mobile chargers, monitor optimization inputs related to the plurality of electrically powered vehicles operated by a plurality of customers, determine a lowest-cost-based ranked listing of matched charger and vehicle pairings for each of the plurality of customers based upon the optimization inputs related to the plurality of available chargers and the optimization inputs related to the plurality of the electrically powered vehicles, present the ranked listing of matched charger and vehicle pairings to each of the customers, monitor selection by each of the plurality of customers of a desired charger for the customer from the ranked listing, and direct each of the plurality of customers to the desired charger for the customer.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: August 22, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan B. Martin, Matthew C. Kirklin, Charles E. Freese, V, Margarita M. Mann, William H. Pettit
  • Patent number: 11641128
    Abstract: Presented are mobile charging stations for recharging electrified vehicles, methods for making/using such mobile charging stations, and parking facilities equipped with such mobile charging stations. A mobile charging station includes a frame with drive wheels and a prime mover operable to drive the wheels to propel the charging station. A hydrogen storage container and fuel cell are mounted to the frame. The fuel cell oxidizes hydrogen received from the storage container to generate electrical current. An electrical coupling mechanism connects the fuel cell to a battery pack of an electric-drive vehicle. A resident or remote controller is programmed to receive charge requests to recharge vehicles, and responsively determines path plan data for the mobile charging station. The controller commands the prime mover to propel the mobile charging station from the charger's origin to a charger destination, and enables the fuel cell to transmit electrical current to the vehicle.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: May 2, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan B. Martin, Matthew C. Kirklin, Charles E. Freese, V, Margarita M. Mann, William H. Pettit
  • Patent number: 11462752
    Abstract: A system for managing heat in a mobile charger configured to provide power to an electric vehicle includes the mobile charger. The mobile charger includes a fuel cell stack, a heat reservoir, and a liquid coolant system including one or more liquid coolant loops configured to transfer heat between the fuel cell stack and the heat reservoir. The mobile charger further includes a computerized processor which is programmed to selectively control the liquid coolant system in one of a plurality of a thermal management modes configured to selectively remove heat from the fuel cell stack and provide heat to the fuel cell stack.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: October 4, 2022
    Assignee: GM Global Technology Operations LLC
    Inventors: William H. Pettit, Charles E. Freese, V, Margarita M. Mann, Alan B. Martin, Matthew C. Kirklin
  • Publication number: 20220014038
    Abstract: Presented are mobile charging stations for recharging electrified vehicles, methods for making/using such mobile charging stations, and parking facilities equipped with such mobile charging stations. A mobile charging station includes a frame with multiple drive wheels and a prime mover operable to drive the wheels to propel the charging station. A hydrogen storage container and fuel cell are mounted to the frame. The fuel cell oxidizes hydrogen received from the storage container to generate electrical current. An electrical coupling mechanism connects the fuel cell to a traction battery pack of an electric-drive vehicle. A resident or remote controller is programmed to receive charge requests to recharge vehicles, and responsively determines path plan data for the mobile charging station. The controller commands the prime mover to propel the mobile charging station from the charger's origin to a charger destination, and enables the fuel cell to transmit electrical current to the vehicle.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alan B. Martin, Matthew C. Kirklin, Charles E. Freese, V, Margarita M. Mann, William H. Pettit
  • Publication number: 20210380008
    Abstract: A fuel cell system includes a fuel cell generator, a rechargeable energy storage circuit, an auxiliary load, a converter circuit, and a switch circuit. The fuel cell generator is operable to generate electrical power in a stack output signal. The auxiliary load is powered by the rechargeable energy storage circuit while in a first mode, and powered by a local signal while in a second mode. The converter circuit is operable to convert the stack output signal into a plurality of recharge signals while in the first mode and in the second mode, and convert the stack output signal into the local signal while in the second mode. The switch circuit is operable switch the plurality of recharge signals to one or more electric vehicles, and switch the local signal to the auxiliary load while in the second mode.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alan B. Martin, Matthew C. Kirklin, Margarita M. Mann, William H. Pettit, Charles E. Freese, V
  • Patent number: 11152814
    Abstract: Presented are mobile charging stations for recharging electrified vehicles, methods for making/using such mobile charging stations, and parking facilities equipped with such mobile charging stations. A mobile charging station includes a frame with multiple drive wheels and a prime mover operable to drive the wheels to propel the charging station. A hydrogen storage container and fuel cell are mounted to the frame. The fuel cell oxidizes hydrogen received from the storage container to generate electrical current. An electrical coupling mechanism connects the fuel cell to a traction battery pack of an electric-drive vehicle. A resident or remote controller is programmed to receive charge requests to recharge vehicles, and responsively determines path plan data for the mobile charging station. The controller commands the prime mover to propel the mobile charging station from the charger's origin to a charger destination, and enables the fuel cell to transmit electrical current to the vehicle.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: October 19, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan B. Martin, Matthew C. Kirklin, Charles E. Freese, V, Margarita M. Mann, William H. Pettit
  • Patent number: 11135931
    Abstract: A mobile fuel cell system includes a fuel cell generator generating a stack output signal. Multiple boost converter circuits converting the stack output signal into multiple recharge signals while in a first mode. A boost converter circuit converting the stack output signal into a local signal while in a second mode. Multiple charging handles connectable to multiple electric vehicles. A switch circuit presenting the recharge signals to the charging handles, remove the recharge signals from the charging handles and present the local signal while in the second mode. An auxiliary load may be connected to the fuel cell generator and the switch circuit. A rechargeable energy storage circuit powers the auxiliary load while in the first mode and stores energy received in the local signal while in the second mode. The auxiliary load is powered with the local signal while in the second mode.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: October 5, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan B. Martin, Matthew C. Kirklin, Margarita M. Mann, William H. Pettit, Charles E. Freese, V
  • Publication number: 20210155108
    Abstract: Presented are mobile charging stations for recharging electrified vehicles, methods for making/using such mobile charging stations, and parking facilities equipped with such mobile charging stations. A mobile charging station includes a frame with multiple drive wheels and a prime mover operable to drive the wheels to propel the charging station. A hydrogen storage container and fuel cell are mounted to the frame. The fuel cell oxidizes hydrogen received from the storage container to generate electrical current. An electrical coupling mechanism connects the fuel cell to a traction battery pack of an electric-drive vehicle. A resident or remote controller is programmed to receive charge requests to recharge vehicles, and responsively determines path plan data for the mobile charging station. The controller commands the prime mover to propel the mobile charging station from the charger's origin to a charger destination, and enables the fuel cell to transmit electrical current to the vehicle.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 27, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alan B. Martin, Matthew C. Kirklin, Charles E. Freese, V, Margarita M. Mann, William H. Pettit
  • Publication number: 20200376972
    Abstract: A system for matching a plurality of electrically powered vehicles to a plurality of available mobile chargers includes a computerized server device programmed to monitor optimization inputs related to the plurality of available mobile chargers, monitor optimization inputs related to the plurality of electrically powered vehicles operated by a plurality of customers, determine a lowest-cost-based ranked listing of matched charger and vehicle pairings for each of the plurality of customers based upon the optimization inputs related to the plurality of available chargers and the optimization inputs related to the plurality of the electrically powered vehicles, present the ranked listing of matched charger and vehicle pairings to each of the customers, monitor selection by each of the plurality of customers of a desired charger for the customer from the ranked listing, and direct each of the plurality of customers to the desired charger for the customer.
    Type: Application
    Filed: May 28, 2019
    Publication date: December 3, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alan B. Martin, Matthew C. Kirklin, Charles E. Freese, V, Margarita M. Mann, William H. Pettit
  • Publication number: 20200376974
    Abstract: A system for charging an electric vehicle includes an autonomous vehicle. The autonomous vehicle includes a suspended body, a plurality of elongated legs configured to enable the autonomous vehicle to maneuver around obstacles in a parking structure and to enable the suspended body to be suspended over the electric vehicle, a charging system configured to charge the electric vehicle, and a plurality of sensors acquiring data regarding an environment around the autonomous vehicle. The autonomous vehicle includes programming to utilize the data regarding the environment around the autonomous vehicle to automatically move to the electric vehicle.
    Type: Application
    Filed: May 28, 2019
    Publication date: December 3, 2020
    Applicant: c/o GM Global Technology Operations LLC
    Inventors: Charles E. Freese, V, William H. Pettit, Margarita M. Mann, Matthew C. Kirklin, Alan B. Martin
  • Publication number: 20200376975
    Abstract: A mobile fuel cell system includes a fuel cell generator generating a stack output signal. Multiple boost converter circuits converting the stack output signal into multiple recharge signals while in a first mode. A boost converter circuit converting the stack output signal into a local signal while in a second mode. Multiple charging handles connectable to multiple electric vehicles. A switch circuit presenting the recharge signals to the charging handles, remove the recharge signals from the charging handles and present the local signal while in the second mode. An auxiliary load may be connected to the fuel cell generator and the switch circuit. A rechargeable energy storage circuit powers the auxiliary load while in the first mode and stores energy received in the local signal while in the second mode. The auxiliary load is powered with the local signal while in the second mode.
    Type: Application
    Filed: May 28, 2019
    Publication date: December 3, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Alan B. Martin, Matthew C. Kirklin, Margarita M. Mann, William H. Pettit, Charles E. Freese, V
  • Publication number: 20200381750
    Abstract: A system for managing heat in a mobile charger configured to provide power to an electric vehicle includes the mobile charger. The mobile charger includes a fuel cell stack, a heat reservoir, and a liquid coolant system including one or more liquid coolant loops configured to transfer heat between the fuel cell stack and the heat reservoir. The mobile charger further includes a computerized processor which is programmed to selectively control the liquid coolant system in one of a plurality of a thermal management modes configured to selectively remove heat from the fuel cell stack and provide heat to the fuel cell stack.
    Type: Application
    Filed: May 28, 2019
    Publication date: December 3, 2020
    Applicant: c/o GM Global Technology Operations LLC
    Inventors: William H. Pettit, Charles E. Freese, V, Margarita M. Mann, Alan B. Martin, Matthew C. Kirklin
  • Patent number: 10069160
    Abstract: A fuel cell voltage recovery system includes a fuel cell stack having a fuel cell stack voltage between fuel cell stack terminals which is at a first voltage during normal fuel cell operation. The system also includes a high voltage electrical system operating at a first DC operating voltage that is generally higher than the first voltage of the fuel cell stack. A boost converter in electrical connection with the fuel cell stack and the high voltage electrical system operates in a normal control mode to transfer electrical power from the fuel cell stack to the high voltage electrical system through regulation and control of average stack output current (boost input current) during normal fuel cell operation. The boost converter can also operate in a voltage control mode to lower the fuel cell stack voltage to a second voltage that is lower than the first voltage. A FCS controller controls the operation of the boost converter.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: September 4, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Joseph Berg, Jun Cai, Sergio E. Garcia, Daniel W. Smith, Matthew C. Kirklin
  • Publication number: 20180034077
    Abstract: A fuel cell voltage recovery system includes a fuel cell stack having a fuel cell stack voltage between fuel cell stack terminals which is at a first voltage during normal fuel cell operation. The system also includes a high voltage electrical system operating at a first DC operating voltage that is generally higher than the first voltage of the fuel cell stack. A boost converter in electrical connection with the fuel cell stack and the high voltage electrical system operates in a normal control mode to transfer electrical power from the fuel cell stack to the high voltage electrical system through regulation and control of average stack output current (boost input current) during normal fuel cell operation. The boost converter can also operate in a voltage control mode to lower the fuel cell stack voltage to a second voltage that is lower than the first voltage. A FCS controller controls the operation of the boost converter.
    Type: Application
    Filed: July 27, 2016
    Publication date: February 1, 2018
    Inventors: JOSEPH BERG, JUN CAI, SERGIO E. GARCIA, DANIEL W. SMITH, MATTHEW C. KIRKLIN
  • Patent number: 9496572
    Abstract: A fuel cell system is provided that includes a fuel cell stack and an air compressor in communication with a cathode inlet, a hydrogen source in communication with an anode inlet, and a start-up battery adapted to power the air compressor. The start-up battery is at least one of a low-voltage battery and a high-voltage battery. A pressure sensor is in communication with the air compressor and adapted to measure a compressor outlet pressure. A power conversion module is in electrical communication with the start-up battery and the air compressor. A controller is in communication with the power conversion module and adapted to set an air compressor speed based on an available electrical energy. A closed-loop method of operating the fuel cell system at start-up is also provided, wherein an anode purge is scheduled based on an air flow rate calculated from the compressor outlet pressure and the actual speed.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: November 15, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Abdullah B. Alp, Akbar Chowdhury, Matthew C. Kirklin, Matthew K. Hortop, John P. Salvador
  • Publication number: 20160181636
    Abstract: A fuel cell system is provided that includes a fuel cell stack and an air compressor in communication with a cathode inlet, a hydrogen source in communication with an anode inlet, and a start-up battery adapted to power the air compressor. The start-up battery is at least one of a low-voltage battery and a high-voltage battery. A power conversion module is in electrical communication with the start-up battery and the air compressor. The power conversion module is adapted to boost a voltage of the start-up battery as desired and power the air compressor at start-up. A controller is in communication with the power conversion module and is adapted to set an air compressor speed based on an available electrical energy. An open-loop method of operating the fuel cell system at start-up is also provided, wherein an anode purge is scheduled based on the available electrical energy from the battery.
    Type: Application
    Filed: March 11, 2015
    Publication date: June 23, 2016
    Inventors: Abdullah B. Alp, Akbar Chowdhury, Kristian M. Whitehouse, Matthew K. Hortop, Matthew C. Kirklin
  • Patent number: 9005785
    Abstract: A fuel cell system is provided that includes a fuel cell stack and an air compressor in communication with a cathode inlet, a hydrogen source in communication with an anode inlet, and a start-up battery adapted to power the air compressor. The start-up battery is at least one of a low-voltage battery and a high-voltage battery. A power conversion module is in electrical communication with the start-up battery and the air compressor. The power conversion module is adapted to boost a voltage of the start-up battery as desired and power the air compressor at start-up. A controller is in communication with the power conversion module and is adapted to set an air compressor speed based on an available electrical energy. An open-loop method of operating the fuel cell system at start-up is also provided, wherein an anode purge is scheduled based on the available electrical energy from the battery.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Abdullah B. Alp, Akbar Chowdhury, Kristian M. Whitehouse, Matthew K. Hortop, Matthew C. Kirklin