Patents by Inventor Matthew C. Waldon
Matthew C. Waldon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240169046Abstract: Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.Type: ApplicationFiled: November 28, 2023Publication date: May 23, 2024Inventors: Deepti S. Prakash, Lucia E. Ballard, Jerrold V. Hauck, Feng Tang, Etai Littwin, Pavan Kumar Anasosalu Vasu, Gideon Littwin, Thorsten Gernoth, Lucie Kucerova, Petr Kostka, Steven P. Hotelling, Eitan Hirsh, Tal Kaitz, Jonathan Pokrass, Andrei Kolin, Moshe Laifenfeld, Matthew C. Waldon, Thomas P. Mensch, Lynn R. Youngs, Christopher G. Zeleznik, Michael R. Malone, Ziv Hendel, Ivan Krstic, Anup K. Sharma
-
Patent number: 11868455Abstract: Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.Type: GrantFiled: February 22, 2021Date of Patent: January 9, 2024Assignee: Apple Inc.Inventors: Deepti S. Prakash, Lucia E. Ballard, Jerrold V. Hauck, Feng Tang, Etai Littwin, Pavan Kumar Anasosalu Vasu, Gideon Littwin, Thorsten Gernoth, Lucie Kucerova, Petr Kostka, Steven P. Hotelling, Eitan Hirsh, Tal Kaitz, Jonathan Pokrass, Andrei Kolin, Moshe Laifenfeld, Matthew C. Waldon, Thomas P. Mensch, Lynn R. Youngs, Christopher G. Zeleznik, Michael R. Malone, Ziv Hendel, Ivan Krstic, Anup K. Sharma
-
Publication number: 20230184939Abstract: A proximity sensor includes a light source configured to emit a beam of optical radiation and a detector configured to output an electrical signal in response to the optical radiation that is incident on the detector. A first optical multimode fiber is configured to receive the emitted beam and to direct the emitted beam toward an object. A second optical multimode fiber is configured to receive the optical radiation reflected from the object and to convey the received optical radiation to the detector. A processor is coupled to process the electrical signal so as to compute a distance to the object.Type: ApplicationFiled: December 14, 2021Publication date: June 15, 2023Inventors: Yazan Z. Alnahhas, Eamon H. O'Connor, Jianmin Gong, Matthew C. Waldon, Mauro O. Magnaghi, Meng Zhang, Prabhakar Gulgunje, Wei Lin, Yohai Zmora
-
Patent number: 11151235Abstract: Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.Type: GrantFiled: July 31, 2018Date of Patent: October 19, 2021Assignee: Apple Inc.Inventors: Deepti S. Prakash, Lucia E. Ballard, Jerrold V. Hauck, Feng Tang, Etai Littwin, Pavan Kumar Anasosalu Vasu, Gideon Littwin, Thorsten Gernoth, Lucie Kucerova, Petr Kostka, Steven P. Hotelling, Eitan Hirsh, Tal Kaitz, Jonathan Pokrass, Andrei Kolin, Moshe Laifenfeld, Matthew C. Waldon, Thomas P. Mensch, Lynn R. Youngs, Christopher G. Zeleznik, Michael R. Malone, Ziv Hendel, Ivan Krstic, Anup K. Sharma, Kelsey Y. Ho
-
Publication number: 20210286865Abstract: Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.Type: ApplicationFiled: February 22, 2021Publication date: September 16, 2021Inventors: Deepti S. Prakash, Lucia E. Ballard, Jerrold V. Hauck, Feng Tang, Etai Littwin, Pavan Kumar Ansosalu Vasu, Gideon Littwin, Thorsten Gernoth, Lucie Kucerova, Petr Kostka, Steven P. Hotelling, Eitan Hirsh, Tal Kaitz, Jonathan Pokrass, Andrei Kolin, Moshe Laifenfeld, Matthew C. Waldon, Thomas P. Mensch, Lynn R. Youngs, Christopher G. Zeleznik, Michael R. Malone, Ziv Hendel, Ivan Krstic, Anup K. Sharma
-
Patent number: 10999540Abstract: An imaging device includes objective optics configured to form an image at a focal plane and having an optical axis that intersects the focal plane at an optical center. An image sensor, which includes an array of sensor elements arranged in a matrix of rows and columns, is positioned in the focal plane with a center point of the matrix displaced transversely by at least ten rows relative to the optical center.Type: GrantFiled: February 17, 2020Date of Patent: May 4, 2021Assignee: APPLE INC.Inventors: Sijie Li, Rui L. Peterson, Matthew C Waldon
-
Patent number: 10929515Abstract: Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.Type: GrantFiled: July 31, 2018Date of Patent: February 23, 2021Assignee: Apple Inc.Inventors: Deepti S. Prakash, Lucia E. Ballard, Jerrold V. Hauck, Feng Tang, Etai Littwin, Pavan Kumar Ansosalu Vasu, Gideon Littwin, Thorsten Gernoth, Lucie Kucerova, Petr Kostka, Steven P. Hotelling, Eitan Hirsh, Tal Kaitz, Jonathan Pokrass, Andrei Kolin, Moshe Laifenfeld, Matthew C. Waldon, Thomas P. Mensch, Lynn R. Youngs, Christopher G. Zeleznik, Michael R. Malone, Ziv Hendel, Ivan Krstic, Anup K. Sharma
-
Patent number: 10795001Abstract: An electro-optical device includes a laser light source, which is configured to emit at least one beam of light. A beam steering device is configured to transmit and scan the at least one beam across a target scene. In an array of sensing elements, each sensing element is configured to output a signal indicative of incidence of photons on the sensing element. Light collection optics are configured to image the target scene scanned by the transmitted beam onto the array, wherein the beam steering device scans the at least one beam across the target scene with a spot size and scan resolution that are smaller than a pitch of the sensing elements. Circuitry is coupled to actuate the sensing elements only in a selected region of the array and to sweep the selected region over the array in synchronization with scanning of the at least one beam.Type: GrantFiled: December 15, 2019Date of Patent: October 6, 2020Assignee: APPLE INC.Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Matthew C. Waldon, Mina A. Rezk, Thierry Oggier
-
Publication number: 20200158831Abstract: An electro-optical device includes a laser light source, which is configured to emit at least one beam of light. A beam steering device is configured to transmit and scan the at least one beam across a target scene. In an array of sensing elements, each sensing element is configured to output a signal indicative of incidence of photons on the sensing element. Light collection optics are configured to image the target scene scanned by the transmitted beam onto the array, wherein the beam steering device scans the at least one beam across the target scene with a spot size and scan resolution that are smaller than a pitch of the sensing elements. Circuitry is coupled to actuate the sensing elements only in a selected region of the array and to sweep the selected region over the array in synchronization with scanning of the at least one beam.Type: ApplicationFiled: December 15, 2019Publication date: May 21, 2020Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Matthew C. Waldon, Mina A. Rezk, Thierry Oggier
-
Patent number: 10402624Abstract: One embodiment may take the form of a method of operating a computing device to provide presence based functionality. The method may include operating the computing device in a reduced power state and collecting a first set of data from a first sensor. Based on the first set of data, the computing device determines if an object is within a threshold distance of the computing device and, if the object is within the threshold distance, the device activates a secondary sensor to collect a second set of data. Based on the second set of data, the device determines if the object is a person. If the object is a person, the device determines a position of the person relative to the computing device and executes a change of state in the computing device based on the position of the person relative to the computing device. If the object is not a person, the computing device remains in a reduced power state.Type: GrantFiled: February 28, 2017Date of Patent: September 3, 2019Assignee: Apple Inc.Inventors: Edward Allen Valko, Matthew C. Waldon, Rudolph Van der Merwe, William Matthew Vieta, Myra M. Haggerty, Alex T. Nelson
-
Patent number: 10324171Abstract: An electro-optical device includes a laser light source, which emits at least one beam of light pulses, a beam steering device, which transmits and scans the at least one beam across a target scene, and an array of sensing elements. Each sensing element outputs a signal indicative of a time of incidence of a single photon on the sensing element. Light collection optics image the target scene scanned by the transmitted beam onto the array. Circuitry is coupled to actuate the sensing elements only in a selected region of the array and to sweep the selected region over the array in synchronization with scanning of the at least one beam.Type: GrantFiled: December 8, 2016Date of Patent: June 18, 2019Assignee: APPLE INC.Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Matthew C. Waldon, Mina A Rezk, Thierry Oggier
-
Patent number: 10228720Abstract: The present application describes various embodiments of systems and methods for providing internal components for portable computing devices having a thin profile. More particularly, the present application describes internal components configured to fit within a relatively thin outer enclosure.Type: GrantFiled: June 8, 2012Date of Patent: March 12, 2019Assignee: Apple Inc.Inventors: Brett W. Degner, Christiaan A. Ligtenberg, Ron A. Hopkinson, Patrick Kessler, Bradley J. Hamel, Dinesh C. Mathew, John M. Brock, Keith J. Hendren, Peteris K. Augenbergs, Joss N. Giddings, Matthew C. Waldon, Cina Hazegh, Matthew P. Casebolt, Charles A. Schwalbach, Brandon S. Smith, William F. Leggett, Gavin J. Reid, Tom Tate, Gary Thomason
-
Patent number: 10215553Abstract: Embodiments described include a system comprising a position sensing device (PSD) and a light source. The light source is configured to, by passing one or more light beams through the PSD, cause one or more electrical currents to flow through the PSD. The system further comprises a processor, configured to (i) in response to the electrical currents, ascertain an amount of power that is delivered by the light source, and (ii) in response to the amount of power exceeding a threshold amount of power, inhibit the light source from further operation. Other embodiments are also described.Type: GrantFiled: March 10, 2016Date of Patent: February 26, 2019Assignee: Apple Inc.Inventors: Jawad Nawasra, Matthew C. Waldon, Scott T. Smith, Thomas M. Gregory
-
Publication number: 20190042718Abstract: Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.Type: ApplicationFiled: July 31, 2018Publication date: February 7, 2019Inventors: Deepti S. Prakash, Lucia E. Ballard, Jerrold V. Hauck, Feng Tang, Etai Littwin, Pavan Kumar Ansosalu Vasu, Gideon Littwin, Thorsten Gernoth, Lucie Kucerova, Petr Kostka, Steven P. Hotelling, Eitan Hirsh, Tal Kaitz, Jonathan Pokrass, Andrei Kolin, Moshe Laifenfeld, Matthew C. Waldon, Thomas P. Mensch, Lynn R. Youngs, Christopher G. Zeleznik, Michael R. Malone, Ziv Hendel, Ivan Krstic, Anup K. Sharma, Kelsey Y. Ho
-
Publication number: 20190044723Abstract: Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.Type: ApplicationFiled: July 31, 2018Publication date: February 7, 2019Inventors: Deepti S. Prakash, Lucia E. Ballard, Jerrold V. Hauck, Feng Tang, Etai Littwin, Pavan Kumar Ansosalu Vasu, Gideon Littwin, Thorsten Gernoth, Lucie Kucerova, Petr Kostka, Steven P. Hotelling, Eitan Hirsh, Tal Kaitz, Jonathan Pokrass, Andrei Kolin, Moshe Laifenfeld, Matthew C. Waldon, Thomas P. Mensch, Lynn R. Youngs, Christopher G. Zeleznik, Michael R. Malone, Ziv Hendel, Ivan Krstic, Anup K. Sharma
-
Publication number: 20180341009Abstract: An electro-optical device includes at least one laser light source and a beam steering device, which transmits and scan the at least one beam across a target scene. One or more sensing elements output a signal indicative of a time of incidence of a single photon on the sensing element from the target scene. Circuitry processes the signal in order to determine respective distances to points in the scene and controls the light source to emit the beam at the low level during a first scan, to identify, based on the first scan, the points in the scene that are located at respective distances from the device that are greater than a predefined threshold distance, and to control the laser light source during a second scan to emit the beam at the high level while the beam steering device directs the beam toward the identified points.Type: ApplicationFiled: May 4, 2017Publication date: November 29, 2018Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Matthew C. Waldon, Mina A. Rezk, Thierry Oggier
-
Patent number: 9997551Abstract: A sensing device includes an array of sensing elements. Each sensing element includes a photodiode, including a p-n junction, and a local biasing circuit, coupled to reverse-bias the p-n junction at a bias voltage greater than a breakdown voltage of the p-n junction by a margin sufficient so that a single photon incident on the p-n junction triggers an avalanche pulse output from the sensing element. A bias control circuit is coupled to set the bias voltage in different ones of the sensing elements to different, respective values that are greater than the breakdown voltage.Type: GrantFiled: December 20, 2015Date of Patent: June 12, 2018Assignee: APPLE INC.Inventors: Shingo Mandai, Gennadiy A. Agranov, Matthew C. Waldon
-
Patent number: 9846473Abstract: An electronic device may have light-based components. The light-based components may include light sources, light detectors, and image sensors. The light-based components may be aligned with a window in the device. The window may be formed within an inactive area of a display or within other device structures. The window may have one or more window members mounted within an opening in a display layer in the inactive area. Visible light blocking material such as chalcogenide glass may be incorporated into the window to provide the window with an opaque appearance that matches the opaque appearance of surrounding portions of the inactive portion of the display. In configurations in which the light-based components include a visible image sensor or other visible light detecting component, the window may be provided with a portion that is transparent at visible wavelengths.Type: GrantFiled: March 25, 2015Date of Patent: December 19, 2017Assignee: Apple Inc.Inventors: Micah P. Kalscheur, Matthew C. Waldon
-
Publication number: 20170193282Abstract: One embodiment may take the form of a method of operating a computing device to provide presence based functionality. The method may include operating the computing device in a reduced power state and collecting a first set of data from a first sensor. Based on the first set of data, the computing device determines if an object is within a threshold distance of the computing device and, if the object is within the threshold distance, the device activates a secondary sensor to collect a second set of data. Based on the second set of data, the device determines if the object is a person. If the object is a person, the device determines a position of the person relative to the computing device and executes a change of state in the computing device based on the position of the person relative to the computing device. If the object is not a person, the computing device remains in a reduced power state.Type: ApplicationFiled: February 28, 2017Publication date: July 6, 2017Inventors: Edward Allen Valko, Matthew C. Waldon, Rudolph Van der Merwe, William Matthew Vieta, Myra M. Haggerty, Alex T. Nelson
-
Publication number: 20170179173Abstract: A sensing device includes an array of sensing elements. Each sensing element includes a photodiode, including a p-n junction, and a local biasing circuit, coupled to reverse-bias the p-n junction at a bias voltage greater than a breakdown voltage of the p-n junction by a margin sufficient so that a single photon incident on the p-n junction triggers an avalanche pulse output from the sensing element. A bias control circuit is coupled to set the bias voltage in different ones of the sensing elements to different, respective values that are greater than the breakdown voltage.Type: ApplicationFiled: December 20, 2015Publication date: June 22, 2017Inventors: Shingo Mandai, Gennadiy A. Agranov, Matthew C. Waldon