Patents by Inventor Matthew C. Weisenberger

Matthew C. Weisenberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230357963
    Abstract: A method for joule carbonization of fibers includes subjecting the fibers, made from an intrinsically electrically-conductive material, to a current density sufficient to heat the fibers to a carbonization temperature of between 900-2000° C. whereby the fibers are carbonized into carbon fibers. A method for joule graphitization of fibers includes subjecting the fibers, made from an intrinsically electrically-conductive material, to a current density sufficient to heat the fibers to a graphitization temperature of between 2400-3000° C. whereby the fibers are graphitized into graphitic carbon fiber.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 9, 2023
    Inventors: Matthew C. Weisenberger, Ruben Sarabia-Riquelme
  • Patent number: 10155359
    Abstract: A flexible sheet of aligned carbon nanotubes includes an array of aligned nanotubes held in a polymer matrix material. The carbon nanotubes have an average length of between about 50 microns and about 500 microns. The polymer matrix has an average thickness of between about 10 microns and about 500 microns. The flexible sheet has a density of about 0.2 to about 1.0 g/cc and includes between about 98 to about 60 weight percent aligned carbon nanotubes and between about 2 and about 40 weight percent polymer. A tape of aligned carbon nanotubes, a method for producing a tape of aligned carbon nanotubes, a method of producing the flexible aligned carbon nanotube sheet material and a method of increasing unidirectional heat conduction from a work piece are also disclosed.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: December 18, 2018
    Assignee: The University of Kentucky Research Foundation
    Inventor: Matthew C. Weisenberger
  • Patent number: 10134995
    Abstract: The present invention concerns a water-processable n-type semiconductor comprised of polyvinylpyrrolidone (PVP), carbon nanotubes (CNTs) and poly(ethyleneimine) (PEI). The semiconductors are prepared by providing PVP and CNTs in a hydrophilic slurry and dispersing therein small amounts of PEI.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: November 20, 2018
    Assignee: UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION
    Inventors: Ruben S. Riquelme, Matthew C. Weisenberger, Camila F. Gomez
  • Publication number: 20170222151
    Abstract: The present invention concerns a water-processable n-type semiconductor comprised of polyvinylpyrrolidone (PVP), carbon nanotubes (CNTs) and poly(ethyleneimine) (PEI). The semiconductors are prepared by providing PVP and CNTs in a hydrophilic slurry and dispersing therein small amounts of PEI.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 3, 2017
    Inventors: Ruben S. Riquelme, Matthew C. Weisenberger, Camila F. Gomez
  • Publication number: 20150314562
    Abstract: A flexible sheet of aligned carbon nanotubes includes an array of aligned nanotubes held in a polymer matrix material. The carbon nanotubes have an average length of between about 50 microns and about 500 microns. The polymer matrix has an average thickness of between about 10 microns and about 500 microns. The flexible sheet has a density of about 0.2 to about 1.0 g/cc and includes between about 98 to about 60 weight percent aligned carbon nanotubes and between about 2 and about 40 weight percent polymer. A tape of aligned carbon nanotubes, a method for producing a tape of aligned carbon nanotubes, a method of producing the flexible aligned carbon nanotube sheet material and a method of increasing unidirectional heat conduction from a work piece are also disclosed.
    Type: Application
    Filed: December 13, 2013
    Publication date: November 5, 2015
    Applicant: The University of Kentucky Research Foundation
    Inventor: Matthew C. Weisenberger
  • Patent number: 8632879
    Abstract: A flexible sheet of aligned carbon nanotubes includes an array of aligned nanotubes held in a polymer matrix material. The carbon nanotubes have an average length of between about 50 microns and about 500 microns. The polymer matrix has an average thickness of between about 10 microns and about 500 microns. The flexible sheet has a density of about 0.2 to about 1.0 g/cc and includes between about 98 to about 60 weight percent aligned carbon nanotubes and between about 2 and about 40 weight percent polymer. A tape of aligned carbon nanotubes, a method for producing a tape of aligned carbon nanotubes, a method of producing the flexible aligned carbon nanotube sheet material and a method of increasing unidirectional heat conduction from a work piece are also disclosed.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: January 21, 2014
    Assignee: The University of Kentucky Research Foundation
    Inventor: Matthew C. Weisenberger
  • Publication number: 20120060826
    Abstract: A flexible sheet of aligned carbon nanotubes includes an array of aligned nanotubes in a free standing film form not adhered to the synthesis substrate, with a matrix infiltrated interstitially into the nanotube array with access to the nanotube tips from both the top and bottom. That is, the infiltrant is purposely limited from over-filling or coating one or both exterior top and/or bottom surfaces of the array, blocking access to the tips. A typical matrix is a polymer material.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 15, 2012
    Inventor: Matthew C. Weisenberger
  • Publication number: 20090266477
    Abstract: A flexible sheet of aligned carbon nanotubes includes an array of aligned nanotubes held in a polymer matrix material. The carbon nanotubes have an average length of between about 50 microns and about 500 microns. The polymer matrix has an average thickness of between about 10 microns and about 500 microns. The flexible sheet has a density of about 0.2 to about 1.0 g/cc and includes between about 98 to about 60 weight percent aligned carbon nanotubes and between about 2 and about 40 weight percent polymer. A tape of aligned carbon nanotubes, a method for producing a tape of aligned carbon nanotubes, a method of producing the flexible aligned carbon nanotube sheet material and a method of increasing unidirectional heat conduction from a work piece are also disclosed.
    Type: Application
    Filed: April 25, 2008
    Publication date: October 29, 2009
    Inventor: Matthew C. Weisenberger