Patents by Inventor Matthew Chapman

Matthew Chapman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11272885
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: March 15, 2022
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Matthew Chapman, Alan Szmodis
  • Patent number: 11272866
    Abstract: A system and method for monitoring body chemistry of a user, the system comprising: a housing supporting: a microsensor comprising a first and second working electrode, a reference electrode, and a counter electrode, and configured to access interstitial fluid of the user, and an electronics subsystem comprising a signal conditioning module that receives a signal stream, from the microsensor, wherein the electronics subsystem is configured to detect an impedance signal derived from two of the first working electrode, the second working electrode, the reference electrode, and the counter electrode; and a processing subsystem comprising: a first module configured to generate an analysis indicative of an analyte parameter of the user and derived from the signal stream and the impedance signal, and a second module configured to transmit information derived from the analysis to the user, thereby facilitating monitoring of body chemistry of the user.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: March 15, 2022
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Matthew Chapman, Alan Szmodis, Abhijit Ghosh
  • Publication number: 20220054813
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20220054814
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 24, 2022
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 11197985
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: December 14, 2021
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 11172851
    Abstract: A system and method for monitoring body chemistry of a user, the system comprising: a housing supporting: a microsensor comprising a first and second working electrode, a reference electrode, and a counter electrode, and configured to access interstitial fluid of the user, and an electronics subsystem comprising a signal conditioning module that receives a signal stream, from the microsensor, wherein the electronics subsystem is configured to detect an impedance signal derived from two of the first working electrode, the second working electrode, the reference electrode, and the counter electrode; and a processing subsystem comprising: a first module configured to generate an analysis indicative of an analyte parameter of the user and derived from the signal stream and the impedance signal, and a second module configured to transmit information derived from the analysis to the user, thereby facilitating monitoring of body chemistry of the user.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: November 16, 2021
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Dominic Pitera, Matthew Chapman, Michael Gifford
  • Publication number: 20210321942
    Abstract: Systems, devices, and methods for biomonitoring are disclosed herein. In some embodiments, a device for monitoring a user's health comprises a patch including a substrate configured to couple to the user's skin, and an array of microneedles carried by the substrate. The array of microneedles can be configured to access interstitial fluid in the user's skin and generate a first electrical signal indicative of at least one analyte in the interstitial fluid. The device can include a pod configured to releasably couple to the patch, the pod having at least one sensor configured to generate a second electrical signal indicative of a physiological parameter of the user. The pod can further include a processor configured to receive and process the first and second electrical signals to generate health measurements for the user. The pod can also include a communication unit configured to transmit the health measurements to a remote device.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 21, 2021
    Inventors: Ashwin Pushpala, Matthew Chapman, Ydo Wexler, Daniel R. Goldner, Jeffrey Dachis
  • Publication number: 20210294722
    Abstract: A method of determining a time stamp for an event in a digital processing system, the method comprising the steps of: obtaining a coarse time stamp from a time stamp counter; obtaining timing correction data from one or more hardware components of the system; and adjusting the coarse time stamp value based on the timing correction data to provide a precision time stamp value.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 23, 2021
    Inventor: Matthew Chapman
  • Patent number: 11123532
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: September 21, 2021
    Assignee: ONE DROP BIOSENSOR TECHNOLOGIES, LLC
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20210275097
    Abstract: A system and method for monitoring body chemistry of a user, the system comprising: a housing supporting: a microsensor comprising a first and second working electrode, a reference electrode, and a counter electrode, and configured to access interstitial fluid of the user, and an electronics subsystem comprising a signal conditioning module that receives a signal stream, from the microsensor, wherein the electronics subsystem is configured to detect an impedance signal derived from two of the first working electrode, the second working electrode, the reference electrode, and the counter electrode; and a processing subsystem comprising: a first module configured to generate an analysis indicative of an analyte parameter of the user and derived from the signal stream and the impedance signal, and a second module configured to transmit information derived from the analysis to the user, thereby facilitating monitoring of body chemistry of the user.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 9, 2021
    Inventors: Ashwin Pushpala, Matthew Chapman, Alan Szmodis, Abhijit Ghosh
  • Patent number: 11114089
    Abstract: A method, system, and computer program product for applying a profile to an assistive device based on a multitude of cues includes: gathering audio inputs surrounding an assistive device; analyzing, by the assistive device, the audio inputs; determining, based on the analyzing, scenario cues; classifying a current environment surrounding the assistive device from the scenario cues; comparing the current environment to device profiles of the assistive device; determining, based on the comparing, a matching profile; and, in response to determining the matching profile, executing the matching profile on the assistive device.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: September 7, 2021
    Assignee: International Business Machines Corporation
    Inventors: Matthew Chapman, Chengxuan Xing, Andrew J. Daniel, Ashley Harrison
  • Publication number: 20210236057
    Abstract: A system and method for monitoring body chemistry of a user, the system comprising: a housing supporting: a microsensor comprising a first and second working electrode, a reference electrode, and a counter electrode, and configured to access interstitial fluid of the user, and an electronics subsystem comprising a signal conditioning module that receives a signal stream, from the microsensor, wherein the electronics subsystem is configured to detect an impedance signal derived from two of the first working electrode, the second working electrode, the reference electrode, and the counter electrode; and a processing subsystem comprising: a first module configured to generate an analysis indicative of an analyte parameter of the user and derived from the signal stream and the impedance signal, and a second module configured to transmit information derived from the analysis to the user, thereby facilitating monitoring of body chemistry of the user.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 5, 2021
    Inventors: Ashwin Pushpala, Dominic Pitera, Matthew Chapman, Michael Gifford
  • Patent number: 11061988
    Abstract: Building of a web application includes receiving the web application that is comprised of a plurality of modules, the web application comprising a plurality of pages; and receiving respective usage statistics information for each of the plurality of pages. Building the application includes splitting the plurality of modules into one or more bundles by determining for each of the plurality of modules whether to include that module in a main bundle of the web application based on how many of the plurality of pages utilize that module and based on respective usage statistics associated with each of the plurality of pages that utilize that module; and then building a production version of the web application comprising the main bundle.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: July 13, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew Chapman, Chengxuan Xing, Ashley Harrison, Andrew J. Daniel
  • Patent number: 11061802
    Abstract: A method of determining a time stamp for an event in a digital processing system, the method comprising the steps of: obtaining a coarse time stamp from a time stamp counter; obtaining timing correction data from one or more hardware components of the system; and adjusting the coarse time stamp value based on the timing correction data to provide a precision time stamp value.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: July 13, 2021
    Assignee: Zomojo PTY LTD
    Inventor: Matthew Chapman
  • Publication number: 20210204845
    Abstract: A system and method for monitoring body chemistry of a user, the system comprising: a housing supporting: a microsensor comprising a first and second working electrode, a reference electrode, and a counter electrode, and configured to access interstitial fluid of the user, and an electronics subsystem comprising a signal conditioning module that receives a signal stream, from the microsensor, wherein the electronics subsystem is configured to detect an impedance signal derived from two of the first working electrode, the second working electrode, the reference electrode, and the counter electrode; and a processing subsystem comprising: a first module configured to generate an analysis indicative of an analyte parameter of the user and derived from the signal stream and the impedance signal, and a second module configured to transmit information derived from the analysis to the user, thereby facilitating monitoring of body chemistry of the user.
    Type: Application
    Filed: January 22, 2021
    Publication date: July 8, 2021
    Inventors: Ashwin Pushpala, Matthew Chapman, Alan Szmodis, Abhijit Ghosh
  • Publication number: 20210100504
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: December 17, 2020
    Publication date: April 8, 2021
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20210100505
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: December 17, 2020
    Publication date: April 8, 2021
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20200405234
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 31, 2020
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20200390395
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: July 29, 2020
    Publication date: December 17, 2020
    Inventors: Ashwin Pushpala, Matthew Chapman, Alan Szmodis
  • Patent number: 10862749
    Abstract: A system for managing a network using intent inference includes a network interface that is configured to obtain device information regarding a plurality of hardware devices within a data communication network. A processor is configured to infer intended packet handling behavior of a plurality of the devices. A network verification system models packet handling behavior of the devices within the network and compares the inferred intended behavior to the modeled packet handling behavior. The system can take action in response to the results of the comparison, which can include initiating a configuration change to one or more of the hardware devices of the data communication network.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: December 8, 2020
    Assignee: VMware, Inc.
    Inventors: Firat Kiyak, Giri Prashanth Subramanian, Sajid Awan, Matthew Chapman Caesar, Philip Brighten Godfrey, Matthew Paul Wycklendt