Patents by Inventor Matthew D. Ebersole

Matthew D. Ebersole has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230365924
    Abstract: A method and related apparatus for confirming whether a kill laser successfully destroys an undesired population of cells includes introducing fluorescent dye into cells, exciting the cells with a detection laser or a light emitting diode to cause the cell to fluoresce for a first time, measuring the amount of fluorescence in the cells with a detector capable of emitting a detection pulse, classifying the cells via embedded processing as undesired or desired cells based on the amount of fluorescence, firing a kill beam with a kill laser at any undesired cells, measuring the amount of fluorescence in the cells a second time to determine whether a fluorescent event was generated from the kill beam striking the cells, and providing feedback to an operator of the kill laser as to whether any fluorescent events were generated from the kill beam striking the cells.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 16, 2023
    Inventors: Frederick Savage, David Appleyard, Zheng Xia, Matthew D. Ebersole, Daniel McAda
  • Publication number: 20230082674
    Abstract: A method of choosing which undesired cell to destroy in a multi-cell fluorescent event includes detecting fluorescence of cells, converting photons detected in the fluorescence into an analog voltage output signal, and identifying at least two discernable peaks associated with the cells. By looking solely at properties measured within the multi-cell fluorescent event, a decision of which cell to target for elimination can be made. Using this method with large population sizes can result in an effective sex skewed product. The sex skewed product can, for example, be formed from bull semen which is then later used to inseminate cows which results in an increased likelihood of giving birth to female cattle.
    Type: Application
    Filed: October 28, 2022
    Publication date: March 16, 2023
    Inventors: Frederick Savage, Matthew D. Ebersole, Daniel McAda, David Appleyard, Zheng Xia
  • Patent number: 7359060
    Abstract: An optical probe for use in infrared, near infrared, Raman, and other spectrometers includes a probe outer surface with a cavity defined therein. The probe emits light into a sample via emission locations on the probe outer surface, at least one being in the cavity. The light emitted into the sample is then collected at collection locations which include at least two of (a) a reflectance collection location situated on the probe outer surface for collecting diffusely reflected light from any adjacent sample; (b) a transmittance collection location situated in the cavity and receiving light transmitted across the cavity from an emission location situated on an opposite side of the cavity; and (c) a transflectance collection location situated in the cavity and receiving transflected light emitted from an emission location in the cavity, with such light being reflected from a side of the cavity opposite the transflectance collection location.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: April 15, 2008
    Assignee: Thermo Electron Scientific Instruments LLC
    Inventors: Matthew D. Ebersole, Carla S. Draper, Jeffrey Hirsch
  • Patent number: 7339668
    Abstract: A spectrometer (100) includes a light source (102) providing output light (106) to the bundled input ends (108) of multiple light pipes (110). The light pipes (110) branch into sets (118) between their input ends (108) and output ends (114), with each set (118) illuminating a sample detector (126) (via a sample chamber (122)) for measuring light scattered or emitted by a sample, or a reference detector (128) for obtaining a reference/datum measurement of the supplied light, so that comparison of measurements from the sample detector (126) and the reference detector (128) allows compensation of the sample detector measurements for drift. Efficient and accurate measurement is further assured by arraying the multiple light pipes (110) in each set (118) about the input bundle (116) so that each set receives at least substantially the same amount of light from the light source (102).
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: March 4, 2008
    Assignee: Thermo Electron Scientific Instruments LLC
    Inventors: Matthew D. Ebersole, John R. Iverson