Patents by Inventor Matthew D. OLEKSIAK

Matthew D. OLEKSIAK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10421666
    Abstract: Methods of controlling crystal polymorphism in organic-free synthesis of Na-Zeolites and the zeolite crystals formed using those methods are provided. The methods disclosed herein create certain types of zeolite crystals more efficiently than other previously known methods. The methods also create certain types of zeolite crystals in a form and concentration not previously disclosed. The methods disclosed herein generally comprise using solutions with varying ratios of silicon (Si), aluminum (Al), hydroxide (OH), and water. Some implementations of the invention disclosed include efficient methods of producing nearly pure cancrinite (CAN), methods of obtaining sodalite in solutions with a high Si/Al ratio, and a method of forming thin, platelet-like ANA crystals with a width of less than about 1 ?m and a length of at least about 3 ?m.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: September 24, 2019
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Jeffrey D. Rimer, Miguel Maldonado, Matthew D. Oleksiak
  • Patent number: 10407312
    Abstract: In an embodiment, the present disclosure pertains to a composition comprising a zeolite with high silica content. In some embodiments, the silica to aluminum ratio (SAR) for the zeolite is 2:1. In some embodiments, the zeolite comprises Zeolite HOU-2 (LTA-type). In some embodiments, the silica to aluminum ratio (SAR) for the zeolite is >3. In some embodiments, the zeolite comprises Zeolite HOU-3 (FAU type). In some embodiments, the zeolite is synthesized using a one-step method. In some embodiments, the zeolite is synthesized without the use of an organic structure-directing agent (OSDA). In some embodiments, the zeolite is synthesized without the use of post-synthesis dealumination. In some embodiments, the zeolite is synthesized without the use crystal seeds. In some embodiments, the zeolite is used in commercial ion exchange. In some embodiments, the zeolite is used for catalysis reaction. In some embodiments, the zeolite is highly thermostable.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: September 10, 2019
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Marlon T. Conato, Matthew D. Oleksiak, Jeffrey D. Rimer
  • Publication number: 20170369327
    Abstract: Methods of controlling crystal polymorphism in organic-free synthesis of Na-Zeolites and the zeolite crystals formed using those methods are provided. The methods disclosed herein create certain types of zeolite crystals more efficiently than other previously known methods. The methods also create certain types of zeolite crystals in a form and concentration not previously disclosed. The methods disclosed herein generally comprise using solutions with varying ratios of silicon (Si), aluminum (Al), hydroxide (OH), and water. Some implementations of the invention disclosed include efficient methods of producing nearly pure cancrinite (CAN), methods of obtaining sodalite in solutions with a high Si/Al ratio, and a method of forming thin, platelet-like ANA crystals with a width of less than about 1 ?m and a length of at least about 3 ?m.
    Type: Application
    Filed: June 21, 2017
    Publication date: December 28, 2017
    Inventors: Jeffrey D. RIMER, Miguel MALDONADO, Matthew D. OLEKSIAK
  • Publication number: 20170247261
    Abstract: In an embodiment, the present disclosure pertains to a composition comprising a zeolite with high silica content. In some embodiments, the silica to aluminum ratio (SAR) for the zeolite is 2:1. In some embodiments, the zeolite comprises Zeolite HOU-2 (LTA-type). In some embodiments, the silica to aluminum ratio (SAR) for the zeolite is >3. In some embodiments, the zeolite comprises Zeolite HOU-3 (FAU type). In some embodiments, the zeolite is synthesized using a one-step method. In some embodiments, the zeolite is synthesized without the use of an organic structure-directing agent (OSDA). In some embodiments, the zeolite is synthesized without the use of post-synthesis dealumination. In some embodiments, the zeolite is synthesized without the use crystal seeds. In some embodiments, the zeolite is used in commercial ion exchange. In some embodiments, the zeolite is used for catalysis reaction. In some embodiments, the zeolite is highly thermostable.
    Type: Application
    Filed: September 17, 2015
    Publication date: August 31, 2017
    Applicant: University of Houston System
    Inventors: Marlon T. Conato, Matthew D. Oleksiak, Jeffrey D. Rimer
  • Patent number: 9714174
    Abstract: Methods of controlling crystal polymorphism in organic-free synthesis of Na-Zeolites and the zeolite crystals formed using those methods are provided. The methods disclosed herein create certain types of zeolite crystals more efficiently than other previously known methods. The methods also create certain types of zeolite crystals in a form and concentration not previously disclosed. The methods disclosed herein generally comprise using solutions with varying ratios of silicon (Si), aluminum (Al), hydroxide (OH), and water. Some implementations of the invention disclosed include efficient methods of producing nearly pure cancrinite (CAN), methods of obtaining sodalite in solutions with a high Si/Al ratio, and a method of forming thin, platelet-like ANA crystals with a width of less than about 1 ?m and a length of at least about 3 ?m.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: July 25, 2017
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Jeffrey D. Rimer, Miguel Maldonado, Matthew D. Oleksiak
  • Publication number: 20140050659
    Abstract: Methods of controlling crystal polymorphism in organic-free synthesis of Na-Zeolites and the zeolite crystals formed using those methods are provided. The methods disclosed herein create certain types of zeolite crystals more efficiently than other previously known methods. The methods also create certain types of zeolite crystals in a form and concentration not previously disclosed. The methods disclosed herein generally comprise using solutions with varying ratios of silicon (Si), aluminum (Al), hydroxide (OH), and water. Some implementations of the invention disclosed include efficient methods of producing nearly pure cancrinite (CAN), methods of obtaining sodalite in solutions with a high Si/Al ratio, and a method of forming thin, platelet-like ANA crystals with a width of less than about 1 ?m and a length of at least about 3 ?m.
    Type: Application
    Filed: July 19, 2013
    Publication date: February 20, 2014
    Applicant: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Jeffrey D. RIMER, Miguel MALDONADO, Matthew D. OLEKSIAK