Patents by Inventor Matthew D. Summer

Matthew D. Summer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9149938
    Abstract: A system for preventing discomfort to a user of a robotic exoskeleton (200) determines the existence of an exoskeleton operating condition which has the potential to cause at least one of a discomfort or an injury to a user (204) when the exoskeleton is being worn by the user. Responsive to the determining, an exoskeleton control system (224) selectively controls at least one viscous coupling (208, 210) disposed at an interface location (201, 203) of the exoskeleton where a physical interaction occurs between a portion of the user and a portion of the exoskeleton when the exoskeleton is in use. The control system selectively varies a viscosity of a fluid (216) comprising the viscous coupling to control the stiffness of the interface.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: October 6, 2015
    Assignee: Harris Corporation
    Inventors: Matthew D. Summer, Paul M. Bosscher
  • Patent number: 9144907
    Abstract: Robotic system (100) includes a processing device (512) and a plurality of robot actuators (501) to cause a specified motion of the robot (102). The processing device (512) responds to one or more user robot commands (115) initiated by a control operator input at a remote control console (108). A user robot command will specify a first movement of the robot from a first position to a second position. The processing device will compare a current pose of the robot to an earlier pose of the robot to determine a difference between the current pose and the earlier pose. Based on this comparing, the processing device will selectively transform the user robot command to a latency-corrected robot command which specifies a second movement for the robot which is different from the first movement.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: September 29, 2015
    Assignee: Harris Corporation
    Inventors: Matthew D. Summer, Paul M. Bosscher, Michael J. Summer, Miguel Ortega-Morales
  • Patent number: 9128507
    Abstract: Compact haptic interface (100) includes a base (102) and a yoke (304) rotatably disposed within the base. A first drive coupling (312) between a first motor (301) and the yoke rotates the yoke about a yoke axis (308). A carrier (306) is mounted to the yoke and rotatable about a carrier axis (310) transverse to the yoke axis. A rod (110) mounted to the carrier extends along a rod axis (346) transverse to the yoke axis and the carrier axis. A second drive coupling (314) rotates the carrier about the carrier axis responsive to operation of a second motor (302) which is mounted to the yoke. A third motor (303) is supported on the carrier and rotatable with the carrier about the carrier axis of rotation. A third drive coupling (340) facilitates linear movement of the rod along a linear direction responsive to operation of the third motor.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: September 8, 2015
    Assignee: Harris Corporation
    Inventors: Matthew D. Summer, Paul M. Bosscher
  • Publication number: 20150185755
    Abstract: Compact haptic interface (100) includes a base (102) and a yoke (304) rotatably disposed within the base. A first drive coupling (312) between a first motor (301) and the yoke rotates the yoke about a yoke axis (308). A carrier (306) is mounted to the yoke and rotatable about a carrier axis (310) transverse to the yoke axis. A rod (110) mounted to the carrier extends along a rod axis (346) transverse to the yoke axis and the carrier axis. A second drive coupling (314) rotates the carrier about the carrier axis responsive to operation of a second motor (302) which is mounted to the yoke. A third motor (303) is supported on the carrier and rotatable with the carrier about the carrier axis of rotation. A third drive coupling (340) facilitates linear movement of the rod along a linear direction responsive to operation of the third motor.
    Type: Application
    Filed: December 30, 2013
    Publication date: July 2, 2015
    Applicant: Harris Corporation
    Inventors: MATTHEW D. SUMMER, Paul M. Bosscher
  • Publication number: 20150151433
    Abstract: Robot gripping system (200, 200?) includes a motor (202) mounted to a chassis (201). An elongated worm shaft (204) is rotatably mounted to the chassis along a worm axis (211) parallel to a motor rotation axis (209). A drive coupling (210) rotates the elongated worm shaft responsive to rotation of a motor drive shaft. First and second worm gears (205a, 205b) are disposed on the elongated worm shaft. First and second sector gears (206a, 206b) engage the first and second worm gear and rotate respectively about a first and second sector gear axis of rotation transverse to the worm axis. First and second robot gripper fingers (208a, 208b) are coupled to the first and second sector gears such that the fingers rotate about a proximal end (228a, 228b).
    Type: Application
    Filed: December 2, 2013
    Publication date: June 4, 2015
    Applicant: HARRIS CORPORATION
    Inventors: JOHN B. RUST, Paul M. Bosscher, Matthew D. Summer
  • Patent number: 9026250
    Abstract: A robotic arm is mounted on a personal mobility device, such as a wheelchair, scooter or the like, and is controlled with a user input interface, also mounted on the personal mobility device. The user input interface has a grip operable by the user to move in a plurality of orthogonal directions, both spatially and angularly, having articulating arms supporting a housing with a pivot member.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: May 5, 2015
    Assignee: Harris Corporation
    Inventors: Matthew D. Summer, Paul M. Bosscher, Laurance H. Davis, III
  • Publication number: 20150120048
    Abstract: Robotic system (100) includes a processing device (512) and a plurality of robot actuators (501) to cause a specified motion of the robot (102). The processing device (512) responds to one or more user robot commands (115) initiated by a control operator input at a remote control console (108). A user robot command will specify a first movement of the robot from a first position to a second position. The processing device will compare a current pose of the robot to an earlier pose of the robot to determine a difference between the current pose and the earlier pose. Based on this comparing, the processing device will selectively transform the user robot command to a latency-corrected robot command which specifies a second movement for the robot which is different from the first movement.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: HARRIS CORPORATION
    Inventors: Matthew D. Summer, Paul M. Bosscher, Michael J. Summer, Miguel Ortega-Morales
  • Publication number: 20150117466
    Abstract: Systems (100) and methods (700) for increasing a predictability of Telematic Operations (“TOs”) of a Teleoperation System (“TS”). The methods involve: measuring an inherent latency of a Communications Link (“CL”) of TS which varies unpredictably over at least a first window of time; analyzing the inherent latency, which was previously measured, to determine a first reference value useful for increasing the predictability of the TOs; using the first reference value to select an amount of controlled latency to be added to CL (120) at each of a plurality of time points (502-518); and adding the amount of controlled latency to CL at each of the plurality of time points so as to increase the predictability of the TOs. In some scenarios, the amount of controlled latency added at a first time point is different than the amount of controlled latency added at a second time point.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: HARRIS CORPORATION
    Inventors: Matthew D. Summer, Paul M. Bosscher
  • Patent number: 9002517
    Abstract: Method and system for telematic control of a slave device. Displacement of a user interface control is sensed with respect to a control direction. A first directional translation is performed to convert data specifying the control direction to data specifying a slave direction. The slave direction will generally be different from the control direction and defines a direction that the slave device should move in response to the physical displacement of the user interface. A second directional translation is performed to convert data specifying haptic sensor data to a haptic feedback direction. The haptic feedback direction will generally be different from the sensed direction and can define a direction of force to be generated by at least one component of the user interface. The first and second directional translation are determined based on a point-of-view of an imaging sensor.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: April 7, 2015
    Assignee: Harris Corporation
    Inventors: Paul M. Bosscher, Matthew D. Summer, Loran J. Wilkinson, William S. Bowman
  • Patent number: 8996244
    Abstract: A robot system (50) includes a control system (101) having a control interface grip (102). The robot system includes a macro robotic arm (54) and a micro robotic arm (60). The robot system is arranged such that the macro robotic arm will respond, in a first control system state, to movement of the control interface grip. In particular, the macro robotic arm will move in a plurality of directions responsive to corresponding movement of the interface grip. The micro robotic arm will respond, in a second control system state, to movement of the control interface grip. In particular, the micro robotic arm will move in a plurality of directions responsive to corresponding movement of the interface grip.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: March 31, 2015
    Assignee: Harris Corporation
    Inventors: Matthew D. Summer, Paul M. Bosscher, John B. Rust
  • Publication number: 20150057803
    Abstract: Method and system for telematic control of a slave device. Displacement of a user interface control is sensed with respect to a control direction. A first directional translation is performed to convert data specifying the control direction to data specifying a slave direction. The slave direction will generally be different from the control direction and defines a direction that the slave device should move in response to the physical displacement of the user interface. A second directional translation is performed to convert data specifying haptic sensor data to a haptic feedback direction. The haptic feedback direction will generally be different from the sensed direction and can define a direction of force to be generated by at least one component of the user interface. The first and second directional translation are determined based on a point-of-view of an imaging sensor.
    Type: Application
    Filed: September 24, 2014
    Publication date: February 26, 2015
    Inventors: Paul M. Bosscher, Matthew D. Summer, Loran J. Wilkinson, William S. Bowman
  • Patent number: 8965620
    Abstract: Control units (10) for use with unmanned vehicles (12) include an input device (50) that moves in response to a user input, sensors (70) coupled to the input device (50), and a controller (16). The sensors (70) generate outputs related to the movement of the input device (50). The controller (16) determines a target displacement of the unmanned vehicle (12) based on the outputs of the sensors (70), and generates a control input related to the target displacement. The control input, when received by the unmanned vehicle (12), causes the unmanned vehicle (12) to substantially attain the target displacement. The position of the vehicle (12) is thus controlled by directly controlling the displacement of the vehicle (12).
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: February 24, 2015
    Assignee: Harris Corporation
    Inventors: Paul M. Bosscher, Matthew D. Summer, Loran J. Wilkinson
  • Patent number: 8954195
    Abstract: System (100) and methods (500) for remotely controlling a slave device (102). The methods involve: using a Hybrid Hand Controller (“HHC”) as a full haptic controller to control the slave device when the HHC (406) is coupled to a docking station (460); detecting when the HHC is or is being physically de-coupled from the docking station; automatically and seamlessly transitioning an operational mode of at least the HHC from a full haptic control mode to a gestural control mode, in response to a detection that the HHC is or is being de-coupled from the docking station; and using at least the HHC as a portable gestural controller to control the slave device when the HHC is de-coupled from the docking station.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: February 10, 2015
    Assignee: Harris Corporation
    Inventors: Matthew D. Summer, Paul M. Bosscher
  • Patent number: 8943902
    Abstract: Force and torque sensors (10, 10a) include a load-bearing element (12), and strain gauges (20, 22, 23) mounted on the load-bearing element (12) so that the strain gauges (20, 22, 23) generate outputs responsive to external forces and moments applied to the load-bearing element (12). The strain gauges (20, 22, 23) are configured, and the responsive outputs of the strain gauges (20, 22, 23) are processed such that the force and moment measurements generated by the sensors (10, 10a) are substantially immune from drift due to thermally-induced strain in the load-bearing element (12).
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: February 3, 2015
    Assignee: Harris Corporation
    Inventors: Paul M. Bosscher, Matthew D. Summer, John B. Rust, Nicholas Murphy-DuBay, William S. Bowman, Loran J. Wilkinson
  • Patent number: 8918215
    Abstract: Method and system for telematic control of a slave device. A stiffness of a material physically contacted by a slave device (202) is estimated based on information obtained from one or more slave device sensors (216, 217). Based on this stiffness estimation, a motion control command directed to the slave device is dynamically scaled. A data processing system (204) is in communication with a control interface (203) and the slave device. The data processing system (204) is configured to generate the motion control commands in response to sensor data obtained from the control interface. The system (200) also includes a stiffness estimator (602) configured for automatically estimating a stiffness of a material physically contacted by the slave device based on information obtained from the slave device sensors. A scaling unit (607) is responsive to the stiffness estimator and is configured for dynamically scaling the motion control command.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: December 23, 2014
    Assignee: Harris Corporation
    Inventors: Paul M. Bosscher, Matthew D. Summer
  • Patent number: 8918214
    Abstract: Method and system for telematic control of a slave device. Displacement of a user interface control is sensed with respect to a control direction. A first directional translation is performed to convert data specifying the control direction to data specifying a slave direction. The slave direction will generally be different from the control direction and defines a direction that the slave device should move in response to the physical displacement of the user interface. A second directional translation is performed to convert data specifying haptic sensor data to a haptic feedback direction. The haptic feedback direction will generally be different from the sensed direction and can define a direction of force to be generated by at least one component of the user interface. The first and second directional translation are determined based on a point-of-view of an imaging sensor.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: December 23, 2014
    Assignee: Harris Corporation
    Inventors: Paul M. Bosscher, Matthew D. Summer, Loran J. Wilkinson, William S. Bowman
  • Publication number: 20140135991
    Abstract: System (100) and methods (500) for remotely controlling a slave device (102). The methods involve: using a Hybrid Hand Controller (“HHC”) as a full haptic controller to control the slave device when the HHC (406) is coupled to a docking station (460); detecting when the HHC is or is being physically de-coupled from the docking station; automatically and seamlessly transitioning an operational mode of at least the HHC from a full haptic control mode to a gestural control mode, in response to a detection that the HHC is or is being de-coupled from the docking station; and using at least the HHC as a portable gestural controller to control the slave device when the HHC is de-coupled from the docking station.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: HARRIS CORPORATION
    Inventors: Matthew D. Summer, Paul M. Bosscher
  • Publication number: 20140096621
    Abstract: Force and torque sensors (10, 10a) include a load-bearing element (12), and strain gauges (20, 22, 23) mounted on the load-bearing element (12) so that the strain gauges (20, 22, 23) generate outputs responsive to external forces and moments applied to the load-bearing element (12). The strain gauges (20, 22, 23) are configured, and the responsive outputs of the strain gauges (20, 22, 23) are processed such that the force and moment measurements generated by the sensors (10, 10a) are substantially immune from drift due to thermally-induced strain in the load-bearing element (12).
    Type: Application
    Filed: October 5, 2012
    Publication date: April 10, 2014
    Applicant: HARRIS CORPORATION
    Inventors: Paul M. Bosscher, Matthew D. Summer, John B. Rust, Nicholas Murphy-DuBay, William S. Bowman, Loran J. Wilkinson
  • Patent number: 8694134
    Abstract: Interface (101) for converting human control input gestures to telematic control signals. The interface includes a plurality of articulating arms (107a, 107b, 108a, 108b, and 109a, 109b) each mounted at a base end (113, 115, 117) to an interface base and coupled at an opposing end to a housing (106). The articulating arms are operable to permit linear translational movement of the housing in three orthogonal directions. At least one sensor (116) of a first kind is provided for measuring the linear translational movement. A pivot member (201) is disposed in the housing and is arranged to pivot about a single pivot point. A grip (102) is provided and is attached to the pivot member so that a user upon grasping the grip can cause the pivot to rotate within the housing.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: April 8, 2014
    Assignee: Harris Corporation
    Inventors: Paul M. Bosscher, Matthew D. Summer, John B. Rust, Loran J. Wilkinson, William S. Bowman
  • Patent number: 8639386
    Abstract: An interface (101) for converting human control input gestures to telematic control signals includes a plurality of articulating arms (107, 108, 109) each mounted at a base end (113, 115, 117) to an interface base and coupled at an opposing end to a housing (106). The articulating arms are operable to permit linear translational movement of the housing in three orthogonal directions. At least one sensor (116) of a first kind is provided for measuring the linear translational movement. A pivot member (201) is disposed in the housing and is arranged to pivot about a single pivot point. A grip (102) is provided and is attached to the pivot member so that a user upon grasping the grip can cause the pivot to rotate within the housing. A button (118) is provided to switch between at least two modes, wherein when in a first mode control signals are used to control a vehicle base (502), and when in the second mode control signals are used to control a robotic arm (504) coupled to the vehicle base (502).
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: January 28, 2014
    Assignee: Harris Corporation
    Inventors: Matthew D. Summer, Paul M. Bosscher, Loran J. Wilkinson, William S. Bowman, John B. Rust