Patents by Inventor Matthew D. Wightlin

Matthew D. Wightlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12259351
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: March 25, 2025
    Assignee: Dexcom, Inc.
    Inventors: Peter C Simpson, Ted T Lee, Jonathan M Hughes, Stephen J. Vanslyke, Matthew D. Wightlin
  • Patent number: 12220234
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: February 11, 2025
    Assignee: Dexcom, Inc.
    Inventors: Peter C Simpson, Robert Boock, Paul V Neale, Sebastian Bohm, Matthew D. Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20240382122
    Abstract: Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods.
    Type: Application
    Filed: May 15, 2024
    Publication date: November 21, 2024
    Inventors: Peter C. SIMPSON, Robert J. BOOCK, Apurv Ullas KAMATH, Matthew D. WIGHTLIN, Michael J. ESTES
  • Patent number: 12011266
    Abstract: Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: June 18, 2024
    Assignee: Dexcom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Apurv Ullas Kamath, Matthew D. Wightlin, Michael J. Estes
  • Publication number: 20240183818
    Abstract: Systems and methods for compensating for effects of temperature on implantable sensors are provided. In some embodiments, systems and methods are provided for measuring a temperature to determine a change in temperature in a sensor environment. In certain embodiments, a temperature compensation factor is determined based on a change in temperature of the sensor environment. The temperature compensation factor can be used in processing raw data of an analyte signal to report a more accurate analyte concentration.
    Type: Application
    Filed: December 11, 2023
    Publication date: June 6, 2024
    Inventors: Michael J. Estes, Jennifer Blackwell, Sebastian Böhm, Robert J. Boock, Jack Pryor, Peter C. Simpson, Matthew D. Wightlin
  • Patent number: 11892426
    Abstract: Systems and methods for compensating for effects of temperature on implantable sensors are provided. In some embodiments, systems and methods are provided for measuring a temperature to determine a change in temperature in a sensor environment. In certain embodiments, a temperature compensation factor is determined based on a change in temperature of the sensor environment. The temperature compensation factor can be used in processing raw data of an analyte signal to report a more accurate analyte concentration.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: February 6, 2024
    Assignee: Dexcom, Inc.
    Inventors: Michael J. Estes, Jennifer Blackwell, Sebastian Bohm, Robert J. Boock, Jack Pryor, Peter C. Simpson, Matthew D. Wightlin
  • Publication number: 20230301563
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: March 13, 2023
    Publication date: September 28, 2023
    Inventors: Peter C. Simpson, Robert Boock, Paul V Neale, Sebastian Bohm, Matthew D. Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Lievares
  • Publication number: 20230293058
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes an electrochemical sensor incorporating a silver/silver chloride reference electrode, wherein a capacity of the reference electrode is controlled.
    Type: Application
    Filed: February 10, 2023
    Publication date: September 21, 2023
    Inventors: Daiting Rong, Sebastian Bohm, Matthew D. Wightlin
  • Patent number: 11714060
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: August 1, 2023
    Assignee: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20230200752
    Abstract: Devices and methods for providing a user with alerts are provided. The alerts may take different forms, such as an output to a display, a speaker, a vibration module, a shock module, etc. The alerts provide the user with sufficient information to take appropriate action, but the devices may be of limited functionality to enhance their compactness, discreetness, wearability, etc., while also lowering their cost to manufacture.
    Type: Application
    Filed: February 28, 2023
    Publication date: June 29, 2023
    Inventors: Eli REIHMAN, Jennifer BLACKWELL, Leif N. BOWMAN, Thomas HALL, Katherine Yerre KOEHLER, Zebediah L. MCDANIEL, Matthew D. WIGHTLIN
  • Patent number: 11656195
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: May 23, 2023
    Assignee: Dexcom, Inc.
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20230148917
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: November 17, 2022
    Publication date: May 18, 2023
    Inventors: Peter C Simpson, Mark C Brister, Matthew D Wightlin
  • Publication number: 20230136127
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 4, 2023
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul Goode, Apurv U. Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin, Victor Ha, Steve Masterson, Melissa A. Nicholas, John E. Nolting, James R. Petisce, Sean T. Saint, Vance E. Swanson, Kum Ming Woo
  • Publication number: 20230129853
    Abstract: Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods.
    Type: Application
    Filed: December 22, 2022
    Publication date: April 27, 2023
    Inventors: Peter C. SIMPSON, Robert J. BOOCK, Apurv Ullas KAMATH, JR., Matthew D. WIGHTLIN, Michael J. ESTES
  • Patent number: 11559229
    Abstract: Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: January 24, 2023
    Assignee: Dexcom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Apurv Ullas Kamath, Matthew D. Wightlin, Michael J. Estes
  • Publication number: 20220296134
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transeutaneous measurement of glucose in a host.
    Type: Application
    Filed: March 31, 2022
    Publication date: September 22, 2022
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul Goode, Apurv U. Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin, Victor Ha, Steve Masterson, Melissa A. Nicholas, John E. Nolting, James R. Petisce, Sean T. Saint, Vance E. Swanson, Kum Ming Woo
  • Publication number: 20220240820
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: March 31, 2022
    Publication date: August 4, 2022
    Inventors: Peter C. Simpson et al., James H. Brauker, Mark C. Brister, Paul Goode, Apurv U. Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin, Victor Ha, Steve Masterson, Melissa A. Nicholas, John E. Nolting, James R. Petisce, Sean T. Saint, Vance E. Swanson, Kum Ming Woo
  • Publication number: 20220104773
    Abstract: Adhesive pad systems that provide longer lasting adherence of the mounting unit to the host's skin are provided. Some systems include a reinforcing overlay that at least partially covers the adhesive pad. The reinforcing overlay may be removable without disturbing the sensor so that the overlay may be replaceable.
    Type: Application
    Filed: December 7, 2021
    Publication date: April 7, 2022
    Inventors: James Jinwoo Lee, Leif N. Bowman, Tim Ray Gackstetter, Jonathan Hughes, Jeff Jackson, Ted Tang Lee, Phong Lieu, Andrew Attila Pal, James R. Petisce, Jack Pryor, Roger Schneider, Peter C. Simpson, George Vigil, Matthew D. Wightlin
  • Publication number: 20220054056
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 24, 2022
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, JR., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin, Victor Ha, Steve Masterson, Melissa A. Nicholas, John Nolting, James R. Petisce, Sean Saint, Vance Swanson, Kum Ming Woo
  • Publication number: 20220054055
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 24, 2022
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, JR., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin, Victor Ha, Steve Masterson, Melissa A. Nicholas, John Nolting, James R. Petisce, Sean Saint, Vance Swanson, Kum Ming Woo