Patents by Inventor Matthew David Mickelson
Matthew David Mickelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10588178Abstract: During operation, a facility may utilize many sensors, such as cameras, to generate sensor data. Some of these sensors may be housed within protective enclosures. The enclosures may be inside specially controlled environments, such as refrigerators, freezers, and so forth. During operation of the facility, moisture may accumulate on these enclosures, impairing the ability of the camera to acquire an image through the window. Described are devices to selectively heat a viewable area of the window such that moisture accumulation is reduced with minimal power use.Type: GrantFiled: June 25, 2015Date of Patent: March 10, 2020Assignee: AMAZON TECHNOLOGIES, INC.Inventors: John Nelson, Heather Anne Ralph, Matthew David Mickelson, Brad Nathaniel Arnold, Matthew Christopher Smith, Daniel Joseph Peters, Kevin Bailey
-
Patent number: 10420208Abstract: A printed circuit board is provided. The printed circuit board includes a flexible region. The flexible region includes a first copper layer, a first dielectric layer, a second copper layer, an adhesive layer, and a first metal layer, in the order listed. The first metal layer includes a metal film having a tensile strength greater than the first and second copper layers and greater than the dielectric layer.Type: GrantFiled: September 6, 2017Date of Patent: September 17, 2019Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Jonathan Bernard Lester, Bhret Robert Graydon, Matthew David Mickelson, Lauren Akemi Hamamoto Donegan Ryan
-
Patent number: 10365671Abstract: During operation, a facility may utilize many sensors, such as cameras, to generate sensor data. Some of these sensors may be housed within protective enclosures. The enclosures may be inside specially controlled environments, such as refrigerators, freezers, and so forth. During operation of the facility, moisture may accumulate on these enclosures, impairing the ability of the camera to acquire an image through the window. Described are devices to selectively heat a viewable area of the window such that moisture accumulation is reduced with minimal power use.Type: GrantFiled: June 25, 2015Date of Patent: July 30, 2019Assignee: AMAZON TECHNOLOGIES, INC.Inventors: John Nelson, Heather Anne Ralph, Matthew David Mickelson, Brad Nathaniel Arnold, Matthew Christopher Smith, Daniel Joseph Peters, Kevin Bailey
-
Publication number: 20190075651Abstract: A printed circuit board is provided. The printed circuit board includes a flexible region. The flexible region includes a first copper layer, a first dielectric layer, a second copper layer, an adhesive layer, and a first metal layer, in the order listed. The first metal layer includes a metal film having a tensile strength greater than the first and second copper layers and greater than the dielectric layer.Type: ApplicationFiled: September 6, 2017Publication date: March 7, 2019Applicant: Microsoft Technology Licensing, LLCInventors: Jonathan Bernard LESTER, Bhret Robert GRAYDON, Matthew David MICKELSON, Lauren Akemi Hamamoto Donegan RYAN
-
Patent number: 10013030Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: February 7, 2017Date of Patent: July 3, 2018Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Caryle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9904327Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: March 25, 2014Date of Patent: February 27, 2018Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9870066Abstract: Input device manufacture techniques are described. In one or more implementations, a plurality of layers of a key assembly is positioned in a fixture such that one or more projections of the fixture are disposed through one or more openings in each of the one or more layers. The positioned plurality of layers is secured to each other.Type: GrantFiled: April 21, 2015Date of Patent: January 16, 2018Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Matthew David Mickelson, Joel Lawrence Pelley, Amey M. Teredesai, Timothy Carlyle Shaw, Christopher Strickland Beall, Christopher Harry Stoumbos
-
Publication number: 20170177038Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: ApplicationFiled: February 7, 2017Publication date: June 22, 2017Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Caryle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9678542Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: January 13, 2016Date of Patent: June 13, 2017Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Publication number: 20170147084Abstract: Input device adhesive techniques are described. A pressure sensitive key includes a sensor substrate having one or more conductors, a spacer layer, and a flexible contact layer. The spacer layer is disposed proximal to the sensor substrate and has at least one opening. The flexible contact layer is spaced apart from the sensor substrate by the spacer layer and configured to flex through the opening in response to an applied pressure to initiate an input. The flexible contact layer is secured to the spacer layer such that at first edge, the flexible contact layer is secured to the spacer layer at an approximate midpoint of the first edge and is not secured to the spacer along another portion of the first edge and at a second edge, the flexible contact layer is not secured to the spacer layer along an approximate midpoint of the second edge.Type: ApplicationFiled: February 6, 2017Publication date: May 25, 2017Applicant: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Timothy C. Shaw, Rob Huala, David C. Vandervoort, Matthew David Mickelson, Christopher Harry Stoumbos, Joel Lawrence Pelley, Todd David Pleake, Hua Wang
-
Patent number: 9618977Abstract: Input device adhesive techniques are described. A pressure sensitive key includes a sensor substrate having one or more conductors, a spacer layer, and a flexible contact layer. The spacer layer is disposed proximal to the sensor substrate and has at least one opening. The flexible contact layer is spaced apart from the sensor substrate by the spacer layer and configured to flex through the opening in response to an applied pressure to initiate an input. The flexible contact layer is secured to the spacer layer such that at first edge, the flexible contact layer is secured to the spacer layer at an approximate midpoint of the first edge and is not secured to the spacer along another portion of the first edge and at a second edge, the flexible contact layer is not secured to the spacer layer along an approximate midpoint of the second edge.Type: GrantFiled: June 17, 2014Date of Patent: April 11, 2017Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Timothy C. Shaw, Rob Huala, David C. Vandervoort, Matthew David Mickelson, Christopher Harry Stoumbos, Joel Lawrence Pelley, Todd David Pleake, Hua Wang
-
Patent number: 9575515Abstract: Techniques for fabric lamination to a component are described. According to various implementations, a single piece of fabric is laminated to a moveable component and to an apparatus to which the moveable component is attached. Generally, lamination of fabric to a moveable component and portions of an associated apparatus can enhance a user experience in a variety of ways. Embodiments may also be employed to cut fabric from around a surface component of an apparatus.Type: GrantFiled: August 4, 2014Date of Patent: February 21, 2017Assignee: Microsoft Technology Licensing, LLCInventors: Camilo Leon, Kabir Siddiqui, Dane M. Hansen, Anthony Christian Reed, Matthew David Mickelson, Jiannan Chen, Rahul Marwah
-
Publication number: 20160299537Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: ApplicationFiled: June 16, 2016Publication date: October 13, 2016Applicant: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Carlyle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9411751Abstract: Key formation techniques are described. In one or more implementations, an input device includes a key assembly including a plurality of keys that are usable to initiate respective inputs for a computing device, a connection portion configured to be removably connected to the computing device physically and communicatively to communicate signals generated by the plurality of keys to the computing device, and an outer layer that is configured to cover the plurality of keys of the key assembly, the outer layer having a plurality of areas that are embossed thereon that indicate one or more borders of respective said keys.Type: GrantFiled: May 14, 2012Date of Patent: August 9, 2016Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Timothy C. Shaw, Christopher Harry Stoumbos, Joel Lawrence Pelley, Matthew David Mickelson, James Alec Ishihara, Hua Wang, Karsten Aagaard, Ralf Groene, Rob Huala
-
Publication number: 20160209884Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: ApplicationFiled: March 28, 2016Publication date: July 21, 2016Applicant: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Carlyle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Publication number: 20160124467Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: ApplicationFiled: January 13, 2016Publication date: May 5, 2016Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9268373Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: June 1, 2015Date of Patent: February 23, 2016Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Publication number: 20150346780Abstract: Techniques for fabric lamination to a component are described. According to various implementations, a single piece of fabric is laminated to a moveable component and to an apparatus to which the moveable component is attached. Generally, lamination of fabric to a moveable component and portions of an associated apparatus can enhance a user experience in a variety of ways. Embodiments may also be employed to cut fabric from around a surface component of an apparatus.Type: ApplicationFiled: August 4, 2014Publication date: December 3, 2015Inventors: Camilo Leon, Kabir Siddiqui, Dane M. Hansen, Anthony Christian Reed, Matthew David Mickelson, Jiannan Chen, Rahul Marwah
-
Patent number: 9176900Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: March 25, 2014Date of Patent: November 3, 2015Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
-
Patent number: 9158384Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.Type: GrantFiled: August 1, 2012Date of Patent: October 13, 2015Assignee: Microsoft Technology Licensing, LLCInventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard