Patents by Inventor Matthew Dylan Tisdall

Matthew Dylan Tisdall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9940713
    Abstract: A method for MRI inter-scan motion correction includes performing (i) an anatomical localizer scan of a region of interest (ROI) to identify anatomical landmarks defining orientation of a surrounding field-of-view (FOV); (ii) an inter-scan motion reference scan of the ROI to acquire a reference inter-scan dataset indicating a reference navigator location in the ROI; and (iii) scans of the ROI to acquire k-space data. Prior to one or more of the scans, a motion correction process is performed that includes (a) performing an inter-scan motion tracking scan to acquire a tracking inter-scan dataset indicating an updated reference navigator location; (b) determining an estimation of inter-scan patient motion based on a comparison between the reference inter-scan and tracking inter-scan datasets; and (c) updating the FOV relative to the landmarks based on that estimation. Images of the ROI may be generated using the k-space data acquired with each of the scans.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: April 10, 2018
    Assignees: Siemens Healthcare GmbH, The General Hospital Corporation
    Inventors: Himanshu Bhat, Keith Aaron Heberlein, Thomas Beck, Martin Harder, Andre Jan Willem Van Der Kouwe, Matthew Dylan Tisdall
  • Patent number: 9687172
    Abstract: A system determines motion correction data for use in diffusion MR imaging using an RF signal generator and magnetic field gradient generator which sequentially acquire in a single first direction through a volume, first and second slice sets individually comprising multiple individual diffusion image slices. The first set of slices and the second set of slices are spatially interleaved within the volume, by providing in acquiring the second slice set, a low flip angle RF pulse successively followed by a non-diffusion image data readout magnetic field gradient for acquisition of data representing a two dimensional (2D) non-diffusion image used for motion detection of the first slice set successively followed by, a first diffusion imaging RF pulse followed by a first diffusion imaging phase encoding magnetic field gradient for preparation for acquiring data representing a diffusion image slice of the second slice set.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: June 27, 2017
    Assignees: National Institute of Health (NIH), The United States of America, U.S. Dept. of Health and Human Services (DHHS), Siemens Healthcare GmbH
    Inventors: Himanshu Bhat, Andre Jan Willem Van Der Kouwe, Matthew Dylan Tisdall, Keith Aaron Heberlein
  • Publication number: 20170030989
    Abstract: Systems and methods for reconstructing images from data acquired with a magnetic resonance imaging (“MRI”) system are provided. Data are acquired using both a body coil and a multichannel matrix coil. The body coil measurements can be used to constrain the solution space for the image reconstruction from the data acquired using the multichannel matrix coil. The resulting images have the flat sensitivity profile of the body coil, but signal-to-noise ration and undersampling-acceleration gained from a matrix coil.
    Type: Application
    Filed: April 23, 2015
    Publication date: February 2, 2017
    Inventor: MATTHEW DYLAN TISDALL
  • Publication number: 20170016972
    Abstract: A magnetic resonance (MR) method and system are provided for generating real-time prospective motion-corrected images using fast navigators. The real-time motion correction is achieved by using a 2D EPI navigator that is obtained using a simultaneous multi-slice blipped-CAIPI technique. The navigator parameters such as field of view, voxel size, and matrix size can be selected to facilitate fast acquisition while providing information sufficient to detect rotational motions on the order of several degrees or more and translational motions on the order of several millimeters or more. The total time interval for obtaining and reconstructing navigator data, registering the navigator image, and providing feedback to correct for detected motion, can be on the order of about 100 ms or less. This prospective motion correction can be used with a wide range of MR imaging techniques where the pulse sequences do not have significant intervals of “dead” time.
    Type: Application
    Filed: July 13, 2015
    Publication date: January 19, 2017
    Inventors: Himanshu Bhat, Keith Aaron Heberlein, Stephen Farman Cauley, Matthew Dylan Tisdall, Kawin Setsompop, Andre Jan Willem Van Der Kouwe
  • Publication number: 20130187649
    Abstract: A system determines motion correction data for use in diffusion MR imaging using an RF signal generator and magnetic field gradient generator which sequentially acquire in a single first direction through a volume, first and second slice sets individually comprising multiple individual diffusion image slices. The first set of slices and the second set of slices are spatially interleaved within the volume, by providing in acquiring the second slice set, a low flip angle RF pulse successively followed by a non-diffusion image data readout magnetic field gradient for acquisition of data representing a two dimensional (2D) non-diffusion image used for motion detection of the first slice set successively followed by, a first diffusion imaging RF pulse followed by a first diffusion imaging phase encoding magnetic field gradient for preparation for acquiring data representing a diffusion image slice of the second slice set.
    Type: Application
    Filed: June 20, 2012
    Publication date: July 25, 2013
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Himanshu Bhat, Andre Jan Willem Van Der Kouwe, Matthew Dylan Tisdall, Keith Aaron Heberlein