Patents by Inventor Matthew E. Ellis

Matthew E. Ellis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927357
    Abstract: A system includes a plurality of thermostats corresponding to a plurality of HVAC systems that serve a plurality of spaces and a computing system communicable with the plurality of thermostats via a network. The computing system is configured to, for each space of the plurality of spaces, obtain a set of training data relating to thermal behavior of the space, identify a model of thermal behavior of the space based on the set of training data, perform a model predictive control process using the model of thermal behavior of the space to obtain a temperature setpoint for the space, and provide the temperature setpoint to the thermostat corresponding to the HVAC system serving the space. The plurality of thermostats are configured to control the plurality of HVAC systems in accordance with the temperature setpoints.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: March 12, 2024
    Assignee: Johnson Controls Tyco IP Holdings LLP
    Inventors: Kerry M. Bell, Bridget E. Kapler, Alan S. Schwegler, Leyla Mousavi, Kierstyn R. Robbins, Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. ElBsat, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Publication number: 20210127008
    Abstract: Provided are a call deflection and response system and method, wherein a voice call from a caller device is received, a skill group is determined to resolve an issue associated with the call, and a text response to the issue is sent to the caller device, providing a context-based personalized response. A caller leaves a detailed voicemail explaining an issue needing resolution, which is electronically transcribed and then run through a classifier to determine concepts and intents associated with the call. Based on the concepts and intents, responsibility for the call and associated files are transferred to a particular skill group on a chat platform for resolution. A chat entity from the appropriate skill group determines and provides an issue response via text message to the caller device, e.g., to the caller's mobile phone.
    Type: Application
    Filed: January 6, 2021
    Publication date: April 29, 2021
    Inventors: Theodore Dougherty, Adam Mak, Adam Stuczynski, Matthew E. Ellis
  • Publication number: 20200153965
    Abstract: Provided are a call deflection and response system and method, wherein a voice call from a caller device is received, a skill group is determined to resolve an issue associated with the call, and a text response to the issue is sent to the caller device, providing a context-based personalized response. A caller leaves a detailed voicemail explaining an issue needing resolution, which is electronically transcribed and then run through a classifier to determine concepts and intents associated with the call. Based on the concepts and intents, responsibility for the call and associated files are transferred to a particular skill group on a chat platform for resolution. A chat entity from the appropriate skill group determines and provides an issue response via text message to the caller device, e.g., to the caller's mobile phone.
    Type: Application
    Filed: November 10, 2018
    Publication date: May 14, 2020
    Inventors: Theodore Dougherty, Adam Mak, Adam Stuczynski, Matthew E. Ellis
  • Patent number: 9986911
    Abstract: A wireless network having an architecture that resembles a peer-to-peer network has two types of nodes, a first sender type node and a second receiver/relay type node. The network may be used in a medical instrumentation environment whereby the first type node may be wireless devices that could monitor physical parameters of a patient such as for example wireless oximeters. The second type node are mobile wireless communicators that are adapted to receive the data from the wireless devices if they are within the transmission range of the wireless devices. After an aggregation process involving the received data, each of the node communicators broadcasts or disseminates its most up to date data onto the network. Any other relay communicator node in the network that is within the broadcast range of a broadcasting communicator node would receive the up to date data.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: June 5, 2018
    Assignee: Smiths Medical ASD, Inc.
    Inventors: Guy A. Smith, Matthew T. Oswald, Matthew L. Brown, Matthew E. Ellis
  • Patent number: 9949641
    Abstract: A wireless network having an architecture that resembles a peer-to-peer network has two types of nodes, a first sender type node and a second receiver/relay type node. The network may be used in a medical instrumentation environment whereby the first type node may be wireless devices that could monitor physical parameters of a patient such as for example wireless oximeters. The second type node are mobile wireless communicators that are adapted to receive the data from the wireless devices if they are within the transmission range of the wireless devices. After an aggregation process involving the received data, each of the node communicators broadcasts or disseminates its most up to date data onto the network. Any other relay communicator node in the network that is within the broadcast range of a broadcasting communicator node would receive the up to date data.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: April 24, 2018
    Assignee: SMITHS MEDICAL ASD, INC.
    Inventors: Guy A. Smith, Matthew T. Oswald, Matthew L. Brown, Matthew E. Ellis
  • Patent number: 8373557
    Abstract: A wireless network having an architecture that resembles a peer-to-peer network has two types of nodes, a first sender type node and a second receiver/relay type node. The network may be used in a medical instrumentation environment whereby the first type node may be wireless devices that could monitor physical parameters of a patient such as for example wireless oximeters. The second type node are mobile wireless communicators that are adapted to receive the data from the wireless devices if they are within the transmission range of the wireless devices. After an aggregation process involving the received data, each of the node communicators broadcasts or disseminates its most up to date data onto the network. Any other relay communicator node in the network that is within the broadcast range of a broadcasting communicator node would receive the up to date data.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: February 12, 2013
    Assignee: Smiths Medical ASD, Inc.
    Inventors: Guy Smith, Matthew T. Oswald, Matthew L. Brown, Matthew E. Ellis
  • Patent number: 8134459
    Abstract: A wireless network having an architecture that resembles a peer-to-peer network has two types of nodes, a first sender type node and a second receiver/relay type node. The network may be used in a medical instrumentation environment whereby the first type node may be wireless devices that could monitor physical parameters of a patient such as for example wireless oximeters. The second type node are mobile wireless communicators that are adapted to receive the data from the wireless devices if they are within the transmission range of the wireless devices. After an aggregation process involving the received data, each of the node communicators broadcasts or disseminates its most up to date data onto the network. Any other relay communicator node in the network that is within the broadcast range of a broadcasting communicator node would receive the up to date data.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: March 13, 2012
    Assignee: Smiths Medical ASD, Inc.
    Inventors: Guy Smith, Matthew T. Oswald, Matthew L. Brown, Matthew E. Ellis
  • Publication number: 20100094098
    Abstract: A wireless network having an architecture that resembles a peer-to-peer network has two types of nodes, a first sender type node and a second receiver/relay type node. The network may be used in a medical instrumentation environment whereby the first type node may be wireless devices that could monitor physical parameters of a patient such as for example wireless oximeters. The second type node are mobile wireless communicators that are adapted to receive the data from the wireless devices if they are within the transmission range of the wireless devices. After an aggregation process involving the received data, each of the node communicators broadcasts or disseminates its most up to date data onto the network. Any other relay communicator node in the network that is within the broadcast range of a broadcasting communicator node would receive the up to date data.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Applicant: Smiths Medical PM, Inc.
    Inventors: Guy A. Smith, Matthew T. Oswald, Matthew L. Brown, Matthew E. Ellis
  • Publication number: 20090103469
    Abstract: A wireless network having an architecture that resembles a peer-to-peer network has two types of nodes, a first sender type node and a second receiver/relay type node. The network may be used in a medical instrumentation environment whereby the first type node may be wireless devices that could monitor physical parameters of a patient such as for example wireless oximeters. The second type node are mobile wireless communicators that are adapted to receive the data from the wireless devices if they are within the transmission range of the wireless devices. After an aggregation process involving the received data, each of the node communicators broadcasts or disseminates its most up to date data onto the network. Any other relay communicator node in the network that is within the broadcast range of a broadcasting communicator node would receive the up to date data.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 23, 2009
    Applicant: Smiths Medical PM, Inc.
    Inventors: Guy A. Smith, Matthew T. Oswald, Matthew L. Brown, Matthew E. Ellis
  • Publication number: 20090105549
    Abstract: A wireless network having an architecture that resembles a peer-to-peer network has two types of nodes, a first sender type node and a second receiver/relay type node. The network may be used in a medical instrumentation environment whereby the first type node may be wireless devices that could monitor physical parameters of a patient such as for example wireless oximeters. The second type node are mobile wireless communicators that are adapted to receive the data from the wireless devices if they are within the transmission range of the wireless devices. After an aggregation process involving the received data, each of the node communicators broadcasts or disseminates its most up to date data onto the network. Any other relay communicator node in the network that is within the broadcast range of a broadcasting communicator node would receive the up to date data.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 23, 2009
    Applicant: Smiths Medical PM, Inc.
    Inventors: Guy A. Smith, Matthew T. Oswald, Matthew L. Brown, Matthew E. Ellis
  • Publication number: 20090105566
    Abstract: A wireless network having an architecture that resembles a peer-to-peer network has two types of nodes, a first sender type node and a second receiver/relay type node. The network may be used in a medical instrumentation environment whereby the first type node may be wireless devices that could monitor physical parameters of a patient such as for example wireless oximeters. The second type node are mobile wireless communicators that are adapted to receive the data from the wireless devices if they are within the transmission range of the wireless devices. After an aggregation process involving the received data, each of the node communicators broadcasts or disseminates its most up to date data onto the network. Any other relay communicator node in the network that is within the broadcast range of a broadcasting communicator node would receive the up to date data.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 23, 2009
    Applicant: Smiths Medical PM, Inc.
    Inventors: Guy A. Smith, Matthew T. Oswald, Matthew L. Brown, Matthew E. Ellis
  • Patent number: 6442290
    Abstract: A method for processing partial lines of image data from a detector, each partial line of data representing a portion of an image pixel matrix, includes: (a) communicating partial lines of image data over a network from an imaging system to a remote facility; (b) receiving partial lines of image data in a first sequence; (c) assigning to each partial line of image data in a first series a position in a second sequence by reference to a plurality of base addresses; (d) altering the base addresses; and (e) assigning to each partial line of image data in a second series a position in the second sequence by reference to the altered base addresses.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: August 27, 2002
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Matthew E. Ellis, Matthew W. Turek
  • Patent number: 6404909
    Abstract: Partial lines of data representative of adjacent pixels in an image pixel matrix are reordered to facilitate reconstitution of a scanned image. The partial lines are received by a signal processing circuit and are assigned unique addresses by reference to base address and offset values. Each partial line is then stored in a memory address corresponding to the assigned address. The values of the base addresses and offsets may be altered to accommodate different image matrix sizes and scanning patterns.
    Type: Grant
    Filed: July 16, 1998
    Date of Patent: June 11, 2002
    Assignee: General Electric Company
    Inventors: Matthew W. Turek, Matthew E. Ellis
  • Patent number: 6396253
    Abstract: A method for detecting cut data lines in an imaging array having a detector including an array of pixels for measuring radiation, and a plurality of data line contacts is provided. The method includes the steps of initializing pixels of the imaging array which includes a plurality of data lines including at least one uncut data line and at least one cut data line, wherein each cut data line is electrically connected to at least one of the plurality of data line contacts and at least one uncommitted contact. The method further includes determining a signal level for the uncut data lines, measuring a signal level of each data line in the plurality of data lines, and determining a number of cut data lines and a number of uncut data lines by using the signal levels received from each data line in the plurality of data.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: May 28, 2002
    Assignee: General Electric Company
    Inventors: Scott W. Petrick, Matthew E. Ellis, Didier A. Verot, Donald E. Castleberry
  • Publication number: 20010014168
    Abstract: Partial lines of data representative of adjacent pixels in an image pixel matrix are reordered to facilitate reconstitution of a scanned image. The partial lines are received by a signal processing circuit and are assigned unique addresses by reference to base address and offset values. Each partial line is then stored in a memory address corresponding to the assigned address. The values of the base addresses and offsets may be altered to accommodate different image matrix sizes and scanning patterns.
    Type: Application
    Filed: July 16, 1998
    Publication date: August 16, 2001
    Inventors: MATTTHEW W. TUREK, MATTHEW E. ELLIS