Patents by Inventor Matthew E. O'Reilly

Matthew E. O'Reilly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11471852
    Abstract: The invention includes a gas processing system for transforming a hydrocarbon-containing inflow gas into outflow gas products, where the system includes a gas delivery subsystem, a plasma reaction chamber, and a microwave subsystem, with the gas delivery subsystem in fluid communication with the plasma reaction chamber, so that the gas delivery subsystem directs the hydrocarbon-containing inflow gas into the plasma reaction chamber, and the microwave subsystem directs microwave energy into the plasma reaction chamber to energize the hydrocarbon-containing inflow gas, thereby forming a plasma in the plasma reaction chamber, which plasma effects the transformation of a hydrocarbon in the hydrocarbon-containing inflow gas into the outflow gas products, which comprise acetylene and hydrogen. The invention also includes methods for the use of this gas processing system.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: October 18, 2022
    Assignee: Transform Materials LLC
    Inventors: David S. Soane, James Nathan Ashcraft, Jason Samuel Hummelt, Mark Ellis Soderholm, Mathew Leeds, Alexander Olson Santana, Matthew Elijah O'Reilly, Charles E. Ocampo
  • Patent number: 11136678
    Abstract: Disclosed are methods for the electrochemical oxidation of a C—H bond in a compound to give a C—O bond or C—S bond. The oxidation of methane to methanol is described, as well as an electrochemical cell for performing the reaction.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: October 5, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Yogesh Surendranath, Matthew E. O'Reilly
  • Patent number: 11005108
    Abstract: Disclosed are surface immobilized (electro)catalysts that may be prepared by a condensation reaction that generates an aromatic unit that is robust to acid and base and elevated temperatures. Among their many desirable characteristics, the catalysts are far less prone to the bimolecular deactivation pathways commonly observed for homogeneous catalysts, and may be used in solvents with a range of polarities and dielectric strengths. The catalysts are suitable for a wide array of thermal catalytic reactions (polymerization, oxidation, hydrogenation, cross-coupling etc.) and as anodes and/or cathodes in fuel cells, electrolyzers, and in batteries and supercapacitors.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: May 11, 2021
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Yogesh Surendranath, Tomohiro Fukushima, Matthew E. O'Reilly, Seokjoon Oh, Alexander T. Murray, Corey Jarin Kaminsky, Sterling Ben Chu, Megan N. Jackson
  • Publication number: 20190186026
    Abstract: Disclosed are methods for the electrochemical oxidation of a C—H bond in a compound to give a C—O bond or C—S bond. The oxidation of methane to methanol is described, as well as an electrochemical cell for performing the reaction.
    Type: Application
    Filed: August 11, 2017
    Publication date: June 20, 2019
    Inventors: Yogesh Surendranath, Matthew E. O'Reilly
  • Publication number: 20170047592
    Abstract: Disclosed are surface immobilized (electro)catalysts that may be prepared by a condensation reaction that generates an aromatic unit that is robust to acid and base and elevated temperatures. Among their many desirable characteristics, the catalysts are far less prone to the bimolecular deactivation pathways commonly observed for homogeneous catalysts, and may be used in solvents with a range of polarities and dielectric strengths. The catalysts are suitable for a wide array of thermal catalytic reactions (polymerization, oxidation, hydrogenation, cross-coupling etc.) and as anodes and/or cathodes in fuel cells, electrolyzers, and in batteries and supercapacitors.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 16, 2017
    Inventors: Yogesh Surendranath, Tomohiro Fukushima, Matthew E. O'Reilly, Seokjoon Oh, Alexander T. Murray, Corey Jarin Kaminsky, Sterling Ben Chu, Megan N. Jackson