Patents by Inventor Matthew Everett Lawson

Matthew Everett Lawson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10105049
    Abstract: A projector and one or more optical components project a light pattern that scans at least a portion of an anterior segment of an eye of a user, while one or more cameras capture images of the anterior segment. During each scan, different pixels in the projector emit light at different times, causing the light pattern to repeatedly change orientation relative to the eye and thus to illuminate multiple different cross-sections of the anterior segment. The cameras capture images of each cross-section from a total of at least two different vantage points relative to the head of the user. The position of the projector, optical components and cameras relative to the head of the user remains substantially constant throughout each entire scan.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: October 23, 2018
    Inventors: Shantanu Sinha, Hyunsung Park, Albert Redo-Sanchez, Matthew Everett Lawson, Nickolaos Savidis, Pushyami Rachapudi, Ramesh Raskar, Vincent Patalano, II
  • Publication number: 20160206197
    Abstract: A projector and one or more optical components project a light pattern that scans at least a portion of an anterior segment of an eye of a user, while one or more cameras capture images of the anterior segment. During each scan, different pixels in the projector emit light at different times, causing the light pattern to repeatedly change orientation relative to the eye and thus to illuminate multiple different cross-sections of the anterior segment. The cameras capture images of each cross-section from a total of at least two different vantage points relative to the head of the user. The position of the projector, optical components and cameras relative to the head of the user remains substantially constant throughout each entire scan.
    Type: Application
    Filed: January 19, 2016
    Publication date: July 21, 2016
    Inventors: Shantanu Sinha, Hyunsung Park, Albert Redo-Sanchez, Matthew Everett Lawson, Nickolaos Savidis, Pushyami Rachapudi, Ramesh Raskar, Vincent Patalano, II
  • Patent number: 9295388
    Abstract: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.
    Type: Grant
    Filed: March 16, 2014
    Date of Patent: March 29, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Matthew Everett Lawson, Ramesh Raskar
  • Patent number: 9060718
    Abstract: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: June 23, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Matthew Everett Lawson, Ramesh Raskar, Jason Boggess, Siddharth Khullar
  • Publication number: 20140226128
    Abstract: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.
    Type: Application
    Filed: March 16, 2014
    Publication date: August 14, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Matthew Everett Lawson, Ramesh Raskar
  • Publication number: 20130208241
    Abstract: In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 15, 2013
    Inventors: Matthew Everett Lawson, Jason Boggess, Siddharth Khullar, Ramesh Raskar