Patents by Inventor Matthew Francis BIENIOSEK
Matthew Francis BIENIOSEK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240402366Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.Type: ApplicationFiled: May 30, 2024Publication date: December 5, 2024Inventors: Peter Demetri OLCOTT, Matthew Francis BIENIOSEK, Brent HARPER
-
Publication number: 20240316365Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.Type: ApplicationFiled: June 3, 2024Publication date: September 26, 2024Inventors: Peter Demetri OLCOTT, Matthew Francis BIENIOSEK
-
Patent number: 12032107Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.Type: GrantFiled: May 2, 2023Date of Patent: July 9, 2024Assignee: RefleXion Medical, Inc.Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek, Brent Harper
-
Patent number: 12023523Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.Type: GrantFiled: November 16, 2022Date of Patent: July 2, 2024Assignee: RefleXion Medical, Inc.Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek
-
Publication number: 20230393292Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.Type: ApplicationFiled: May 2, 2023Publication date: December 7, 2023Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek, Brent Harper
-
Publication number: 20230256268Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.Type: ApplicationFiled: November 16, 2022Publication date: August 17, 2023Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek
-
Patent number: 11675097Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.Type: GrantFiled: March 17, 2022Date of Patent: June 13, 2023Assignee: RefleXion Medical, Inc.Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek, Brent Harper
-
Patent number: 11511133Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.Type: GrantFiled: April 22, 2021Date of Patent: November 29, 2022Assignee: RefleXion Medical, Inc.Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek
-
Publication number: 20220342095Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.Type: ApplicationFiled: March 17, 2022Publication date: October 27, 2022Inventors: Peter Demetri OLCOTT, Matthew Francis BIENIOSEK, Brent HARPER
-
Patent number: 11287540Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.Type: GrantFiled: May 29, 2020Date of Patent: March 29, 2022Assignee: RefleXion Medical, Inc.Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek, Brent Harper
-
Publication number: 20210260408Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.Type: ApplicationFiled: April 22, 2021Publication date: August 26, 2021Inventors: Peter Demetri OLCOTT, Matthew Francis BIENIOSEK
-
Patent number: 11007384Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.Type: GrantFiled: March 13, 2020Date of Patent: May 18, 2021Assignee: Reflexion Medical, Inc.Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek
-
Publication number: 20200363540Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.Type: ApplicationFiled: May 29, 2020Publication date: November 19, 2020Inventors: Peter Demetri OLCOTT, Matthew Francis BIENIOSEK, Brent HARPER
-
Patent number: 10795037Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.Type: GrantFiled: July 11, 2018Date of Patent: October 6, 2020Assignee: RefleXion Medical, Inc.Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek
-
Publication number: 20200215355Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.Type: ApplicationFiled: March 13, 2020Publication date: July 9, 2020Inventors: Peter Demetri OLCOTT, Matthew Francis BIENIOSEK
-
Patent number: 10603515Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.Type: GrantFiled: August 9, 2018Date of Patent: March 31, 2020Assignee: RefleXion Medical, Inc.Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek
-
Publication number: 20190070437Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.Type: ApplicationFiled: August 9, 2018Publication date: March 7, 2019Inventors: Peter Demetri OLCOTT, Matthew Francis BIENIOSEK
-
Publication number: 20190018154Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.Type: ApplicationFiled: July 11, 2018Publication date: January 17, 2019Inventors: Peter Demetri OLCOTT, Matthew Francis BIENIOSEK