Patents by Inventor Matthew G. Foster

Matthew G. Foster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9970338
    Abstract: A cylinder deactivation system includes an intake cam follower assembly, an exhaust cam follower assembly, an exhaust cam, and a controller. The intake cam follower assembly is used to open an intake engine valve and is switchable to operate in one of an active state and a deactive state. The exhaust cam follower assembly is used to open an exhaust engine valve and is switchable to operate in one of a primary lift state and a secondary lift state. The exhaust cam includes a primary lift cam lobe and a secondary lift cam lobe and is used to actuate the exhaust cam follower assembly in the primary lift state and in the secondary lift state. The controller is used to open the exhaust engine valve during the deactive combustion cycle in advance of the opening of the intake engine valve that occurs during the subsequent active combustion cycle.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: May 15, 2018
    Assignee: DELPHI TECHNOLOGIES IP LIMITED
    Inventors: Matthew G. Foster, Keith A. Confer, Wayne R. Moore
  • Publication number: 20180051601
    Abstract: A cylinder deactivation system includes an intake cam follower assembly, an exhaust cam follower assembly, an exhaust cam, and a controller. The intake cam follower assembly is used to open an intake engine valve and is switchable to operate in one of an active state and a deactive state. The exhaust cam follower assembly is used to open an exhaust engine valve and is switchable to operate in one of a primary lift state and a secondary lift state. The exhaust cam includes a primary lift cam lobe and a secondary lift cam lobe and is used to actuate the exhaust cam follower assembly in the primary lift state and in the secondary lift state. The controller is used to open the exhaust engine valve during the deactive combustion cycle in advance of the opening of the intake engine valve that occurs during the subsequent active combustion cycle.
    Type: Application
    Filed: August 18, 2016
    Publication date: February 22, 2018
    Inventors: Matthew G. Foster, Keith A. Confer, Wayne R. Moore
  • Patent number: 7036982
    Abstract: The invention provides a control strategy and a control system to control a gas sensor to a target operating temperature. It relies upon both feedback and model-based feedforward control systems to achieve and then maintain the sensor at the target operating temperature. The mechanization includes a gas sensor with a heating element in a feedstream. The control strategy employs a control system for the heating element that is based upon the target operating temperature, the temperature of the heating element, and an effect of the feedstream and mounting structure on the temperature of the sensor. The control strategy enables the control system to optimize the heating of a sensor during warm-up and steady state operations.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: May 2, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: James Craig Smith, Wayne Richard Moore, Matthew G. Foster
  • Patent number: 6904752
    Abstract: The invention provides a controller and cylinder deactivation system to regenerate an exhaust aftertreatment device for a multicylinder engine that operates primarily at an air/fuel ratio that is lean of stoichiometry. The invention uses the cylinder deactivation system to control temperature and air/fuel ratio of an exhaust gas feedstream going into an aftertreatment device. The invention also increases the amount of fuel delivered to each non-deactivated cylinder by an amount sufficient to maintain operating power of the engine. The regeneration action includes desorbing NOx from a NOx adsorber catalyst, desulfating the NOx adsorber catalyst, and purging a diesel particulate trap.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: June 14, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Michael Ralph Foster, Matthew G. Foster, Kenneth S. Price
  • Publication number: 20040086023
    Abstract: The invention provides a control strategy and a control system to control a gas sensor to a target operating temperature. It relies upon both feedback and model-based feedforward control systems to achieve and then maintain the sensor at the target operating temperature. The mechanization includes a gas sensor with a heating element in a feedstream. The control strategy employs a control system for the heating element that is based upon the target operating temperature, the temperature of the heating element, and an effect of the feedstream and mounting structure on the temperature of the sensor. The control strategy enables the control system to optimize the heating of a sensor during warm-up and steady state operations.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: James Craig Smith, Wayne Richard Moore, Matthew G. Foster
  • Publication number: 20030121249
    Abstract: The invention provides a controller and cylinder deactivation system to regenerate an exhaust aftertreatment device for a multicylinder engine that operates primarily at an air/fuel ratio that is lean of stoichiometry. The invention uses the cylinder deactivation system to control temperature and air/fuel ratio of an exhaust gas feedstream going into an aftertreatment device. The invention also increases the amount of fuel delivered to each non-deactivated cylinder by an amount sufficient to maintain operating power of the engine. The regeneration action includes desorbing NOx from a NOx adsorber catalyst, desulfating the NOx adsorber catalyst, and purging a diesel particulate trap.
    Type: Application
    Filed: November 25, 2002
    Publication date: July 3, 2003
    Inventors: Michael Ralph Foster, Matthew G. Foster, Kenneth S. Price