Patents by Inventor Matthew Gareld SWARTZLANDER

Matthew Gareld SWARTZLANDER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200116148
    Abstract: A method of treating, tuning, assembling, and/or overhauling a twin rotor device includes applying a coating material on an internal set of working surfaces of the twin rotor device when at least partially assembled. The coating may be factory or field applied to a new or used twin rotor device. The working surfaces may be uncoated or previously coated and may be built-up as the coating material forms a coating on at least some of the working surfaces. Manufacturing variations of a pair of rotors and a housing may be compensated by the coating. One or more performance characteristics of the twin rotor device may be improved by the coating, and variation between a series of twin rotor device may be reduced or substantially eliminated. The coating may reduce internal leakage and increase volumetric efficiency of the twin rotor device. The twin rotor device may be a supercharger 200, a screw compressor 1200, or other twin rotor device.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Matthew Gareld SWARTZLANDER, Michael John FROEHLICH, Timothy Michael KISH
  • Patent number: 10539133
    Abstract: A method of treating, tuning, assembling, and/or overhauling a twin rotor device (200, 1200) includes applying a coating material (102) on an internal set of working surfaces (218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228) of the twin rotor device when at least partially assembled. The coating may be factory or field applied to a new or used twin rotor device. The working surfaces may be uncoated or previously coated and may be built-up as the coating material forms a coating (206, 1206) on at least some of the working surfaces. Manufacturing variations of a pair of rotors (220, 1220) and a housing (210, 1210) may be compensated by the coating. One or more performance characteristics of the twin rotor device may be improved by the coating, and variation between a series of twin rotor device may be reduced or substantially eliminated. The coating may reduce internal leakage and increase volumetric efficiency of the twin rotor device.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: January 21, 2020
    Assignee: Eaton Intelligent Power Limited
    Inventors: Matthew Gareld Swartzlander, Michael John Froehlich, Timothy Michael Kish
  • Patent number: 10480534
    Abstract: A supercharger outlet resonator comprises a housing, a first surface comprising a first opening and a housing axis bisecting the first opening, and a second surface comprising a second opening, the second surface located parallel to the first surface. A channel is perpendicular to the housing axis and connects the first opening to the second opening. The channel comprises at least one sidewall. An envelope is fluidly separated from the channel by the at least one sidewall, the envelope at least partially surrounds the channel, and the envelope extends from the first surface to the second surface. The envelope comprises a third opening and at least one second sidewall. A noise-reducing material located on the housing.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: November 19, 2019
    Assignee: Eaton Intelligent Power Limited
    Inventors: Kartikeya K. Mahalatkar, Girish Sudhir Kulkarni, Sunil Kumar Kunche, Andrew Scott Meyers, Michael J. Froehlich, Matthew Gareld Swartzlander
  • Publication number: 20190113035
    Abstract: The present teachings include an energy recovery device usable in multiple applications, for example hydropower and vehicle power plant applications. In one aspect, an energy recovery device includes a housing having an inlet and an outlet in fluid communication with an internal cavity, and a pair of counter-rotating rotors having intermeshed lobes disposed within the housing internal cavity. Each rotor defines a transport volume between the housing and a pair of adjacent lobes and has a calculated maximum ideal twist angle below which the transport volume will be sealed from both the housing inlet and housing outlet. Each rotor also has an actual twist angle that exceeds the maximum ideal twist angle.
    Type: Application
    Filed: March 9, 2017
    Publication date: April 18, 2019
    Inventors: Matthew Gareld SWARTZLANDER, David YEE
  • Publication number: 20170248019
    Abstract: A gear pump for power generation comprises a first rotor and a second rotor in a case. The first rotor comprises a first plurality of radially spaced teeth, wherein the first plurality of radially spaced teeth wrap around the first rotor helically in a clockwise direction, and wherein at a first position the first plurality of radially spaced teeth have a helix angle different than the helix angle of the first plurality of radially spaced teeth at a second position. The second rotor comprises a second plurality of radially spaced teeth, wherein the second plurality of radially spaced teeth wrap around the second rotor helically in a counter-clockwise direction, and wherein at a first position the second plurality of radially spaced teeth have a helix angle different than the helix angle of the second plurality of radially spaced teeth at a second position.
    Type: Application
    Filed: September 22, 2015
    Publication date: August 31, 2017
    Applicant: Eaton Corporation
    Inventor: Matthew Gareld SWARTZLANDER
  • Publication number: 20170204881
    Abstract: A supercharger outlet resonator comprises a housing, a first surface comprising a first opening and a housing axis bisecting the first opening, and a second surface comprising a second opening, the second surface located parallel to the first surface. A channel is perpendicular to the housing axis and connects the first opening to the second opening. The channel comprises at least one sidewall. An envelope is fluidly separated from the channel by the at least one sidewall, the envelope at least partially surrounds the channel, and the envelope extends from the first surface to the second surface. The envelope comprises a third opening and at least one second sidewall. A noise-reducing material located on the housing.
    Type: Application
    Filed: May 19, 2015
    Publication date: July 20, 2017
    Inventors: Kartikeya K. Mahalatkar, Girish Sudhir Kulkarni, Sunil Kumar Kunche, Andrew Scott Meyers, Michael J. Froehlich, Matthew Gareld Swartzlander
  • Publication number: 20170146012
    Abstract: A method of treating, tuning, assembling, and/or overhauling a twin rotor device (200, 1200) includes applying a coating material (102) on an internal set of working surfaces (218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228) of the twin rotor device when at least partially assembled. The coating may be factory or field applied to a new or used twin rotor device. The working surfaces may be uncoated or previously coated and may be built-up as the coating material forms a coating (206, 1206) on at least some of the working surfaces. Manufacturing variations of a pair of rotors (220, 1220) and a housing (210, 1210) may be compensated by the coating. One or more performance characteristics of the twin rotor device may be improved by the coating, and variation between a series of twin rotor device may be reduced or substantially eliminated. The coating may reduce internal leakage and increase volumetric efficiency of the twin rotor device.
    Type: Application
    Filed: July 1, 2015
    Publication date: May 25, 2017
    Inventors: Matthew Gareld SWARTZLANDER, Michael John FROEHLICH, Timothy Michael KISH
  • Publication number: 20160237978
    Abstract: A gear pump unit for hydroelectric power generation comprises a generator (138) and a control module operatively connected to a gear pump (131). The gear pump (131) comprises a case (131B) with a fluid inlet (132) and an outlet (135). A first rotor (133) comprises a first plurality of radially spaced teeth (133A, 133B, 133C) that wrap around the first rotor helically in a clockwise direction. A second rotor (134) comprises a second plurality of radially spaced teeth (134A, 134B, 134C) that wrap around the second rotor helically in a counter-clockwise direction. The first plurality of teeth mesh with the second plurality of teeth. The gear pump unit operates in a pump, turbine, or siphon mode via the control module 150 selectively rotating the first and second rotors. Electricity is generated by coupling the rotational energy of the first and second rotors to the generator (138).
    Type: Application
    Filed: September 30, 2014
    Publication date: August 18, 2016
    Applicant: Eaton Corporation
    Inventors: Swaminathan Subramanian, Matthew Gareld Swartzlander
  • Publication number: 20160003129
    Abstract: A Roots-type supercharger 100, 1100 includes a housing 120, 1120, a first rotor 200, a second rotor 300, an outlet volume 400, a transfer volume 500, and a bleed port 600, 600?, 1600. The housing includes an interior chamber 130, an inlet port 140, and an outlet port 150, 1150. The first rotor 200 and the second rotor 300 have a plurality of lobes 210, 310, respectively. The outlet volume 400 is substantially bounded between the outlet port, the first rotor, the second rotor, and the interior chamber of the housing. The transfer volume 500 is substantially bounded between the first rotor, the second rotor, and the interior chamber of the housing. The bleed port 600, 600?, 1600 is adapted to fluidly connect the outlet volume and the transfer volume at least during a portion of a transfer volume cycle. The variable bleed port may include a plate that pivots about a pivot or slides along a slide. The plate may be arc shaped and may arc around a centerline of one of the rotors.
    Type: Application
    Filed: September 15, 2015
    Publication date: January 7, 2016
    Inventors: Matthew Gareld SWARTZLANDER, Jason Christopher KOVAL
  • Patent number: D816717
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: May 1, 2018
    Inventors: Gopal Kishanrao Kulkarni, Kartikeya Krishnoji Mahalatkar, Matthew Gareld Swartzlander