Patents by Inventor MATTHEW GLENN JIN

MATTHEW GLENN JIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230281317
    Abstract: A false positive vulnerability system detects whether a software vulnerability identified by a static code vulnerability analyzer is a true vulnerability or a false positive. The system utilizes deep learning models to predict whether an identified vulnerability is accurate given the source code context of the identified vulnerability. A neural encoder transformer model is trained to classify a false positive given the method body including the identified vulnerability. A neural decoder transformer model is trained to predict a candidate line-of-code to complete a prompt inserted into the context of the identified vulnerability. The candidate line-of-code that successfully completes the prompt is used as a signal to identify that the identified vulnerability is a false positive.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 7, 2023
    Inventors: COLIN BRUCE CLEMENT, MATTHEW GLENN JIN, ANANT GIRISH KHARKAR, XIAOYU LIU, XIN SHI, NEELAKANTAN SUNDARESAN, ROSHANAK ZILOUCHIAN MOGHADDAM
  • Patent number: 11599345
    Abstract: Language interoperability between source code programs not compatible with an interprocedural static code analyzer is achieved through language-independent representations of the programs. The source code programs are transformed into respective intermediate language instructions from which a language-independent control flow graph and a language-independent type environment is created. A program compatible with the interprocedural static code analyzer is generated from the language-independent control flow graph and the language-independent type environment in order to utilize the interprocedural static code analyzer to detect memory safety faults.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: March 7, 2023
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC.
    Inventors: Shao Kun Deng, Matthew Glenn Jin, Shuvendu Lahiri, Xiaoyu Liu, Xin Shi, Neelakantan Sundaresan
  • Publication number: 20220058007
    Abstract: Language interoperability between source code programs not compatible with an interprocedural static code analyzer is achieved through language-independent representations of the programs. The source code programs are transformed into respective intermediate language instructions from which a language-independent control flow graph and a language-independent type environment is created. A program compatible with the interprocedural static code analyzer is generated from the language-independent control flow graph and the language-independent type environment in order to utilize the interprocedural static code analyzer to detect memory safety faults.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 24, 2022
    Inventors: SHAO KUN DENG, MATTHEW GLENN JIN, SHUVENDU LAHIRI, XIAOYU LIU, XIN SHI, NEELAKANTAN SUNDARESAN
  • Patent number: 11250038
    Abstract: An interactive question and answer (Q&A) service provides pairs of questions and corresponding answers related to the content of a web page. The service includes pre-configured Q&A pairs derived from a deep learning framework that includes a series of neural networks trained through joint and transfer learning to generate questions for a given text passage. In addition, pre-configured Q&A pairs are generated from historical web access patterns and sources related to the content of the web page.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: February 15, 2022
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC.
    Inventors: Payal Bajaj, Gearard Boland, Anshul Gupta, Matthew Glenn Jin, Eduardo Enrique Noriega De Armas, Jason Shaver, Neelakantan Sundaresan, Roshanak Zilouchian Moghaddam
  • Publication number: 20210357192
    Abstract: Language interoperability between source code programs not compatible with an interprocedural static code analyzer is achieved through language-independent representations of the programs. The source code programs are transformed into respective intermediate language instructions from which a language-independent control flow graph and a language-independent type environment is created. A program compatible with the interprocedural static code analyzer is generated from the language-independent control flow graph and the language-independent type environment in order to utilize the interprocedural static code analyzer to detect memory safety faults.
    Type: Application
    Filed: May 13, 2020
    Publication date: November 18, 2021
    Inventors: SHAO KUN DENG, MATTHEW GLENN JIN, SHUVENDU LAHIRI, XIAOYU LIU, XIN SHI, NEELAKANTAN SUNDARESAN
  • Patent number: 11175897
    Abstract: Language interoperability between source code programs not compatible with an interprocedural static code analyzer is achieved through language-independent representations of the programs. The source code programs are transformed into respective intermediate language instructions from which a language-independent control flow graph and a language-independent type environment is created. A program compatible with the interprocedural static code analyzer is generated from the language-independent control flow graph and the language-independent type environment in order to utilize the interprocedural static code analyzer to detect memory safety faults.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: November 16, 2021
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC.
    Inventors: Shao Kun Deng, Matthew Glenn Jin, Shuvendu Lahiri, Xiaoyu Liu, Xin Shi, Neelakantan Sundaresan
  • Publication number: 20190228099
    Abstract: An interactive question and answer (Q&A) service provides pairs of questions and corresponding answers related to the content of a web page. The service includes pre-configured Q&A pairs derived from a deep learning framework that includes a series of neural networks trained through joint and transfer learning to generate questions for a given text passage. In addition, pre-configured Q&A pairs are generated from historical web access patterns and sources related to the content of the web page.
    Type: Application
    Filed: August 13, 2018
    Publication date: July 25, 2019
    Inventors: PAYAL BAJAJ, GEARARD BOLAND, ANSHUL GUPTA, MATTHEW GLENN JIN, EDUARDO ENRIQUE NORIEGA DE ARMAS, JASON SHAVER, NEELAKANTAN SUNDARESAN, ROSHANAK ZILOUCHIAN MOGHADDAM