Patents by Inventor Matthew H. LINDNER

Matthew H. LINDNER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11873451
    Abstract: Compositions based on effluents and/or products from FCC processing of a high saturate content, low heteroatom content feedstock are provided. By processing a high saturate content, low heteroatom content feed under various types of FCC conditions, a variety of compositions with unexpected compositional features and/or unexpected properties can be formed. The unexpected compositional features and/or unexpected properties can correspond to features and/or properties associated with one or more of the total effluent, a naphtha boiling range portion of effluent, a distillate or light cycle oil boiling range portion of the effluent, and/or a bottoms portion of the effluent.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: January 16, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Cody M. Diaz, Xinrui Yu, Timothy J. Anderson, Sheryl B. Rubin-Pitel, Matthew H. Lindner
  • Publication number: 20220363998
    Abstract: Compositions based on effluents and/or products from FCC processing of a high saturate content, low heteroatom content feedstock are provided. By processing a high saturate content, low heteroatom content feed under various types of FCC conditions, a variety of compositions with unexpected compositional features and/or unexpected properties can be formed. The unexpected compositional features and/or unexpected properties can correspond to features and/or properties associated with one or more of the total effluent, a naphtha boiling range portion of effluent, a distillate or light cycle oil boiling range portion of the effluent, and/or a bottoms portion of the effluent.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 17, 2022
    Inventors: Cody M. Diaz, Xinrui Yu, JR., Timothy J. Anderson, Sheryl B. Rubin-Pitel, Matthew H. Lindner
  • Patent number: 11390820
    Abstract: Naphtha boiling range compositions are provided that are formed from crude oils with unexpected combinations of high naphthenes to aromatics weight and/or volume ratio and a low sulfur content. The resulting naphtha boiling range fractions can have a high naphthenes to aromatics weight ratio, a low but substantial content of aromatics, and a low sulfur content. In some aspects, the fractions can be used as fuels and/or fuel blending products after fractionation with minimal further refinery processing. In other aspects, the amount of additional refinery processing, such as hydrotreatment, catalytic reforming and/or isomerization, can be reduced or minimized. By reducing, minimizing, or avoiding the amount of hydroprocessing needed to meet fuel and/or fuel blending product specifications, the fractions derived from the high naphthenes to aromatics ratio and low sulfur crudes can provide fuels and/or fuel blending products having a reduced or minimized carbon intensity.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: July 19, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Matthew H. Lindner, Scott K. Berkhous, Mike T. Noorman, Gregory K. Lilik, Shifang Luo, Ian J. Laurenzi, Jasmina Poturovic
  • Publication number: 20210363450
    Abstract: Naphtha boiling range compositions are provided that are formed from crude oils with unexpected combinations of high naphthenes to aromatics weight and/or volume ratio and a low sulfur content. The resulting naphtha boiling range fractions can have a high naphthenes to aromatics weight ratio, a low but substantial content of aromatics, and a low sulfur content. In some aspects, the fractions can be used as fuels and/or fuel blending products after fractionation with minimal further refinery processing. In other aspects, the amount of additional refinery processing, such as hydrotreatment, catalytic reforming and/or isomerization, can be reduced or minimized. By reducing, minimizing, or avoiding the amount of hydroprocessing needed to meet fuel and/or fuel blending product specifications, the fractions derived from the high naphthenes to aromatics ratio and low sulfur crudes can provide fuels and/or fuel blending products having a reduced or minimized carbon intensity.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Inventors: Matthew H. Lindner, Scott K. Berkhous, Mike T. Noorman, Gregory K. Lilik, Shifang Luo, Ian J. Laurenzi, Jasmina Poturovic
  • Patent number: 9523057
    Abstract: A diesel fuel additive package, diesel fuel containing the additive and methods for operating an engine on the diesel fuel and additive. The fuel additive includes a reaction product of (a) a hydrocarbyl substituted dicarboxylic acid or anhydride, and (b) an amine compound or salt thereof of the formula wherein R is selected from hydrogen and a hydrocarbyl group containing from about 1 to about 15 carbon atoms, and R1 is selected from hydrogen and a hydrocarbyl group containing from about 1 to about 20 carbon atoms. The reaction product contains at least one amino triazole group. Component (2) of the additive is a hydrocarbyl succinimide dispersant. The additive also includes (3) a C2 to C10 alkyl alcohol; and (4) optionally, a lubricity additive. In the additive, a weight ratio of component (1) to component (2) in the fuel ranges from about 1:3 to about 1:5.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 20, 2016
    Assignee: Afton Chemical Corporation
    Inventors: James Wager, David P. Cleaver, Matthew H. Lindner, Julienne M. Galante-Fox, Scott D. Schwab, John Bennett
  • Publication number: 20120210966
    Abstract: A diesel fuel additive package, diesel fuel containing the additive and methods for operating an engine on the diesel fuel and additive. The fuel additive includes a reaction product of (a) a hydrocarbyl substituted dicarboxylic acid or anhydride, and (b) an amine compound or salt thereof of the formula wherein R is selected from hydrogen and a hydrocarbyl group containing from about 1 to about 15 carbon atoms, and R1 is selected from hydrogen and a hydrocarbyl group containing from about 1 to about 20 carbon atoms. The reaction product contains at least one amino triazole group. Component (2) of the additive is a hydrocarbyl succinimide dispersant. The additive also includes (3) a C2 to C10 alkyl alcohol; and (4) optionally, a lubricity additive. In the additive, a weight ratio of component (1) to component (2) in the fuel ranges from about 1:3 to about 1:5.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Applicant: AFTON CHEMICAL CORPORATION
    Inventors: James WAGER, David P. CLEAVER, Matthew H. LINDNER, Julienne M. GALANTE-FOX, Scott D. SCHWAB, John BENNETT