Patents by Inventor Matthew HILDNER

Matthew HILDNER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230271386
    Abstract: A method of forming a three-dimensional (3D) pattern or article comprises: (1) selecting a first composition to be printed with a nozzle of an apparatus; (II) identifying desired characteristics of a pattern or layer (“pattern/layer”) to be formed by printing the first composition; (Ill) determining dimensional differences between the desired characteristics of the pattern/layer and predicted characteristics of the pattern/layer based on computational simulation modeling, or determining dimensional differences between the desired characteristics of the pattern/layer and actual characteristics of a trial layer, based on a flow rate of the first composition, a speed of a substrate and/or the nozzle, and the desired characteristics of the pattern/layer; and (IV) printing the first composition with the nozzle on the substrate to form the pattern/layer. The method comprises, during (IV) printing, (V) implementing a correction signal to adjust a flow rate of the first composition.
    Type: Application
    Filed: February 27, 2023
    Publication date: August 31, 2023
    Inventors: Bizhong ZHU, Stanley YEE, Kurt A. KOPPI, Jon V. DEGROOT, JR., Albert SHIH, Matthew HILDNER, William VAN DEN BOGERT, James LORENZ
  • Publication number: 20220410094
    Abstract: A static mixer is disclosed. The static mixer comprises a housing (22) defining an internal mixing cavity (36) that longitudinally extends along a central axis between an inlet (38) and an outlet (40) and is adapted for axial flow of a fluid therethrough. The static mixer also comprises a mixing element (42) disposed within the mixing cavity (36). The mixing element (42) is configured to be free from an impingement surface oriented substantially perpendicular to a main direction of fluid flow through the internal mixing cavity (36). The mixing element (42) comprises an elongated mixing blade that is oriented longitudinally within the mixing cavity (36) and comprises a nose axially oriented toward the inlet (38). The static mixer may comprise a heat-exchanging jacket integrally formed with the housing (22). An additive manufacturing system comprising the static mixer, and methods of making and using the same, are also disclosed.
    Type: Application
    Filed: November 20, 2020
    Publication date: December 29, 2022
    Inventors: Bizhong ZHU, Stanley YEE, Matthew HILDNER, Jeffrey PLOTT, Albert SHIH
  • Publication number: 20220409869
    Abstract: A dynamic balloon angioplasty system for applying a dynamic pressure to fracture hardened materials embedded within an elastic conduit. The system having a pressure source system outputting at least a first predetermined pressure from a pressure source outlet, and an angioplasty unit fluidly coupled to the pressure source outlet receiving at least the first predetermined pressure. The angioplasty unit having an angioplasty inflation device, an angioplasty balloon connector, and an oscillating mechanism selectively actuated to output a plurality of pressure pulses to the angioplasty balloon via a fluid communication path. A control system is configured to determine an optimal hydraulic pressure oscillation frequency and amplitude for a given procedure and output a control signal to the oscillating mechanism, and monitor a pressure signal to detect fracture of the hardened material within the elastic conduit or system failure or leakage.
    Type: Application
    Filed: August 29, 2022
    Publication date: December 29, 2022
    Inventors: Robert CHISENA, Hitinder S. GURM, Matthew HILDNER, Yihao ZHENG, Albert SHIH
  • Patent number: 11464949
    Abstract: A dynamic balloon angioplasty system for applying a dynamic pressure to fracture hardened materials embedded within an elastic conduit. The system having a pressure source system outputting at least a first predetermined pressure from a pressure source outlet, and an angioplasty unit fluidly coupled to the pressure source outlet receiving at least the first predetermined pressure. The angioplasty unit having an angioplasty inflation device, an angioplasty balloon connector, and an oscillating mechanism selectively actuated to output a plurality of pressure pulses to the angioplasty balloon via a fluid communication path. A control system is configured to determine an optimal hydraulic pressure oscillation frequency and amplitude for a given procedure and output a control signal to the oscillating mechanism, and monitor a pressure signal to detect fracture of the hardened material within the elastic conduit or system failure or leakage.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: October 11, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Robert Chisena, Hitinder S. Gurm, Matthew Hildner, Yihao Zheng, Albert Shih
  • Publication number: 20200046949
    Abstract: A dynamic balloon angioplasty system for applying a dynamic pressure to fracture hardened materials embedded within an elastic conduit. The system having a pressure source system outputting at least a first predetermined pressure from a pressure source outlet, and an angioplasty unit fluidly coupled to the pressure source outlet receiving at least the first predetermined pressure. The angioplasty unit having an angioplasty inflation device, an angioplasty balloon connector, and an oscillating mechanism selectively actuated to output a plurality of pressure pulses to the angioplasty balloon via a fluid communication path. A control system is configured to determine an optimal hydraulic pressure oscillation frequency and amplitude for a given procedure and output a control signal to the oscillating mechanism, and monitor a pressure signal to detect fracture of the hardened material within the elastic conduit or system failure or leakage.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 13, 2020
    Inventors: Robert CHISENA, Hitinder S. GURM, Matthew HILDNER, Yihao ZHENG, Albert SHIH