Patents by Inventor Matthew J. Arnold

Matthew J. Arnold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102133
    Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2.0 to 5.0 aluminum; 3.0 to 8.0 tin; 1.0 to 5.0 zirconium; 0 to a total of 16.0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of tin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the ? phase and increase the volume fraction of the ? phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility.
    Type: Application
    Filed: April 26, 2023
    Publication date: March 28, 2024
    Inventors: Matias Garcia-Avila, John V. Mantione, Matthew J. Arnold
  • Patent number: 11674200
    Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2.0 to 5.0 aluminum; 3.0 to 8.0 tin; 1.0 to 5.0 zirconium; 0 to a total of 16.0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of tin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the ? phase and increase the volume fraction of the ? phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: June 13, 2023
    Assignee: ATI PROPERTIES LLC
    Inventors: Matias Garcia-Avila, John V. Mantione, Matthew J. Arnold
  • Publication number: 20220288684
    Abstract: A method of producing a metallic powder material comprises supplying feed materials to a melting hearth, and melting the feed materials on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is passed from the melting hearth either directly or indirectly to an atomizing hearth, where it is heated using a second heat source. At least a portion of the molten material from the atomizing hearth is passed in a molten state to an atomizing apparatus, which forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metallic powder material.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 15, 2022
    Inventors: Robin M. Forbes Jones, Matthew J. Arnold, Ramesh S. Minisandram, Arthur A. Kracke
  • Publication number: 20220033935
    Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2.0 to 5.0 aluminum; 3.0 to 8.0 tin; 1.0 to 5.0 zirconium; 0 to a total of 16.0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of tin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the ? phase and increase the volume fraction of the a phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility.
    Type: Application
    Filed: April 9, 2021
    Publication date: February 3, 2022
    Inventors: Matias Garcia-Avila, John V. Mantione, Matthew J. Arnold
  • Publication number: 20220003497
    Abstract: Certain embodiments of a melting and casting apparatus comprising includes a melting hearth; a refining hearth fluidly communicating with the melting hearth; a receiving receptacle fluidly communicating with the refining hearth, the receiving receptacle including a first outflow region defining a first molten material pathway, and a second outflow region defining a second molten material pathway; and at least one melting power source oriented to direct energy toward the receiving receptacle and regulate a direction of flow of molten material along the first molten material pathway and the second molten material pathway. Methods for casting a metallic material also are disclosed.
    Type: Application
    Filed: September 22, 2021
    Publication date: January 6, 2022
    Inventors: Travis R. Moxley, Lanh G. Dinh, Timothy F. Soran, Edmund J. Haas, Douglas P. Austin, Matthew J. Arnold, Eric R. Martin
  • Patent number: 11150021
    Abstract: Certain embodiments of a melting and casting apparatus comprising includes a melting hearth; a refining hearth fluidly communicating with the melting hearth; a receiving receptacle fluidly communicating with the refining hearth, the receiving receptacle including a first outflow region defining a first molten material pathway, and a second outflow region defining a second molten material pathway; and at least one melting power source oriented to direct energy toward the receiving receptacle and regulate a direction of flow of molten material along the first molten material pathway and the second molten material pathway. Methods for casting a metallic material also are disclosed.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: October 19, 2021
    Assignee: ATI PROPERTIES LLC
    Inventors: Travis R. Moxley, Lanh G. Dinh, Timothy F. Soran, Edmund J. Haas, Douglas P. Austin, Matthew J. Arnold, Eric R. Martin
  • Patent number: 11001909
    Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2.0 to 5.0 aluminum; 3.0 to 8.0 tin; 1.0 to 5.0 zirconium; 0 to a total of 16.0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of tin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the ? phase and increase the volume fraction of the ? phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: May 11, 2021
    Assignee: ATI PROPERTIES LLC
    Inventors: Matias Garcia-Avila, John V. Mantione, Matthew J. Arnold
  • Publication number: 20190381571
    Abstract: A method of producing a metallic powder material comprises supplying feed materials to a melting hearth, and melting the feed materials on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is passed from the melting hearth either directly or indirectly to an atomizing hearth, where it is heated using a second heat source. At least a portion of the molten material from the atomizing hearth is passed in a molten state to an atomizing apparatus, which forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metallic powder material.
    Type: Application
    Filed: January 30, 2019
    Publication date: December 19, 2019
    Inventors: Robin M. Forbes Jones, Matthew J. Arnold, Ramesh S. Minisandram, Arthur A. Kracke
  • Publication number: 20190338397
    Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2.0 to 5.0 aluminum; 3.0 to 8.0 tin; 1.0 to 5.0 zirconium; 0 to a total of 16.0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of tin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the ? phase and increase the volume fraction of the ? phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Inventors: Matias Garcia-Avila, John V. Mantione, Matthew J. Arnold
  • Patent number: 10272487
    Abstract: A system and method for continuous casting. The system includes a melt chamber, a withdrawal chamber, and a secondary chamber therebetween. The melt chamber can maintain a melting pressure and the withdrawal chamber can attain atmospheric pressure. The secondary chamber can include regions that can be adjusted to different pressures. During continuous casting operations, the first region adjacent to the melt chamber can be adjusted to a pressure that is at least slightly greater than the melting pressure; the pressure in subsequent regions can be sequentially decreased and then sequentially increased. The pressure in the final region can be at least slightly greater than atmospheric pressure. The differential pressures can form a dynamic airlock between the melt chamber and the withdrawal chamber, which can prevent infiltration of the melt chamber by non-inert gas in the atmosphere, and thus can prevent contamination of reactive materials in the melt chamber.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: April 30, 2019
    Assignee: ATI PROPERTIES LLC
    Inventor: Matthew J. Arnold
  • Patent number: 10155263
    Abstract: A system and method for continuous casting. The system includes a melt chamber, a withdrawal chamber, and a secondary chamber therebetween. The melt chamber can maintain a melting pressure and the withdrawal chamber can attain atmospheric pressure. The secondary chamber can include regions that can be adjusted to different pressures. During continuous casting operations, the first region adjacent to the melt chamber can be adjusted to a pressure that is at least slightly greater than the melting pressure; the pressure in subsequent regions can be sequentially decreased and then sequentially increased. The pressure in the final region can be at least slightly greater than atmospheric pressure. The differential pressures can form a dynamic airlock between the melt chamber and the withdrawal chamber, which can prevent infiltration of the melt chamber by non-inert gas in the atmosphere, and thus can prevent contamination of reactive materials in the melt chamber.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 18, 2018
    Assignee: ATI PROPERTIES LLC
    Inventor: Matthew J. Arnold
  • Patent number: 9539640
    Abstract: A casting system, apparatus, and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: January 10, 2017
    Assignee: ATI Properties LLC
    Inventors: Evan H. Copland, Matthew J. Arnold, Ramesh S. Minisandram
  • Publication number: 20160332232
    Abstract: A method of producing a metallic powder material comprises supplying feed materials to a melting hearth, and melting the feed materials on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is passed from the melting hearth either directly or indirectly to an atomizing hearth, where it is heated using a second heat source. At least a portion of the molten material from the atomizing hearth is passed in a molten state to an atomizing apparatus, which forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metallic powder material.
    Type: Application
    Filed: May 14, 2015
    Publication date: November 17, 2016
    Inventors: Robin M. Forbes Jones, Matthew J. Arnold, Ramesh S. Minisandram, Arthur A. Kracke
  • Publication number: 20160279699
    Abstract: A casting system, apparatus, and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: Evan H. Copland, Matthew J. Arnold, Ramesh S. Minisandram
  • Patent number: 9381571
    Abstract: A casting system and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: July 5, 2016
    Assignee: ATI PROPERTIES, INC.
    Inventors: Evan H. Copland, Matthew J. Arnold, Ramesh S. Minisandram
  • Publication number: 20160167121
    Abstract: A system and method for continuous casting. The system includes a melt chamber, a withdrawal chamber, and a secondary chamber therebetween. The melt chamber can maintain a melting pressure and the withdrawal chamber can attain atmospheric pressure. The secondary chamber can include regions that can be adjusted to different pressures. During continuous casting operations, the first region adjacent to the melt chamber can be adjusted to a pressure that is at least slightly greater than the melting pressure; the pressure in subsequent regions can be sequentially decreased and then sequentially increased. The pressure in the final region can be at least slightly greater than atmospheric pressure. The differential pressures can form a dynamic airlock between the melt chamber and the withdrawal chamber, which can prevent infiltration of the melt chamber by non-inert gas in the atmosphere, and thus can prevent contamination of reactive materials in the melt chamber.
    Type: Application
    Filed: February 24, 2016
    Publication date: June 16, 2016
    Inventor: Matthew J. Arnold
  • Publication number: 20160144435
    Abstract: An atomizing system and method are disclosed. A system can include a tundish configured to hold a molten material and a nozzle in fluid communication with the tundish. The nozzle and/or the tundish can be comprised of a material having a composition that is substantially similar to the composition of the molten material. An internal channel can be defined in at least one of the tundish or the nozzle. Additionally, a pump can be configured to pump a molten heat transfer medium through the internal channel. A method of atomizing the molten material can include affecting heat transfer between the molten material and the tundish and/or the nozzle with a molten heat transfer medium in at least one internal channel in the tundish and/or the nozzle. The tundish and/or the nozzle can comprise a material that is substantially similar to the molten material.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 26, 2016
    Inventors: Anthony Banik, Matthew J. Arnold
  • Publication number: 20160082508
    Abstract: A casting system and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Inventors: Evan H. Copland, Matthew J. Arnold, Ramesh S. Minisandram
  • Patent number: 9221097
    Abstract: A casting system and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: December 29, 2015
    Assignee: ATI PROPERTIES, INC.
    Inventors: Evan H. Copland, Matthew J. Arnold, Ramesh S. Minisandram
  • Patent number: 9205489
    Abstract: A casting system and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: December 8, 2015
    Assignee: ATI PROPERTIES, INC.
    Inventors: Evan H. Copland, Matthew J. Arnold, Ramesh S. Minisandram