Patents by Inventor Matthew J. Beutel

Matthew J. Beutel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7794890
    Abstract: An alignment system and method for assembling a fuel cell stack. Components of the fuel cell stack have internal alignment features and are aligned to a predetermined orientation during assembly. The system and method allow fuel cell stacks to be assembled within high tolerance levels while improving access to each component during assembly. Additionally, the system and method can provide additional rigidity to a fuel cell stack.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: September 14, 2010
    Inventors: Jeffrey A. Rock, Benno Andreas-Schott, Thomas P. Migliore, Ivan D. Chapman, Matthew J. Beutel, Mark W. Keyser
  • Patent number: 7781122
    Abstract: A bipolar plate for use in a fuel cell stack includes a first plate having a first coolant face with a first set of coolant channels formed therein. A second plate has a second coolant face with a second set of coolant channels formed therein. The first and second coolant faces are adjacent to one another to intermittently cross-link the first and second sets of coolant channels over a region of the first and second coolant faces.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: August 24, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Matthew J Beutel, Lee C Whitehead, Jeffrey A Rock, Michael D Cartwright
  • Patent number: 7704626
    Abstract: The present invention isolates the fluid streams flowing into and out of a fuel cell stack from the terminal plates so that the fluid streams and terminal plates do not come into contact with one another. The prevention of the fluid streams from contacting the terminal plate eliminates corrosion concerns associated with the terminal plate. The present invention accomplishes this isolation through the use of headers having fluid passageways therein that route the fluid streams in and/or out of the fuel cell stack while preventing contact between the fluid streams and the terminal plate.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: April 27, 2010
    Inventors: Paul J Van Benthem, Jeffrey A Rock, Gerald W Fly, Matthew J Beutel
  • Publication number: 20100062320
    Abstract: A unitized electrode assembly for a fuel cell comprising an electrolyte membrane and a subgasket. The subgasket maximizing an operating life of the electrolyte membrane, militating against adverse effects of membrane expansion during use of the fuel cell and membrane shearing under unitized electrode assembly compression.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Chad A. Dammar, Saurabh Vyas, Ronald L. James, Matthew J. Beutel
  • Patent number: 7651581
    Abstract: A method of manufacturing a fuel cell membrane electrode assembly comprising forming and compressing a stack having a plurality of layers in a desired orientation. The layers comprise a membrane, a cathode, an anode, and at least one edge protection layer. The method includes providing at least one mechanical reinforcing layer adjacent the anode or cathode layer, and allowing the electrodes to relax under high heat to remove stress prior to lamination.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: January 26, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Matthew M. Fay, Bhaskar Sompalli, Susan G. Yan, Hubert A. Gasteiger, Matthew J. Beutel
  • Publication number: 20090246599
    Abstract: A PEM fuel cell includes a first plate having a flow field for directing a first fluid along a surface thereof. A second plate includes a flow field for directing a second fluid along a surface thereof. A seal is disposed between the first plate and the second plate. The seal includes a plate margin defining a header aperture for delivering the first fluid to the first plate. The seal defines a carrier having a first side supported by the flow field of the first plate whereby the first fluid is permitted to flow directly from the first header aperture to the flow field of the first plate. The carrier includes a gasket arranged on a second side. The gasket precludes the first fluid from flowing directly from the header aperture to the flow field of the second plate.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Matthew J. Beutel
  • Patent number: 7592088
    Abstract: A seal configuration is provided for a fuel cell stack, including a first bipolar plate and a second bipolar plate, each disposed on opposite sides of a membrane electrode assembly. The seal configuration includes a first sub-gasket adhered to a recess region of the first bipolar plate and a second sub-gasket adhered to a recess region of the second bipolar plate wherein the first and second sub-gaskets are disposed on opposite sides of the membrane electrode assembly. A seal member is disposed in the recessed regions of the first and second bipolar plates and between the first and second sub-gaskets. The seal configuration minimizes the size of the bypass regions around the seal perimeter and provide better control of the positions of all components during assembly of the fuel cell stack. The approach also reduces sensitivity to ambient relative humidity variations and reduces manufacturing costs by eliminating the need for humidity control in the production area.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: September 22, 2009
    Inventors: Jeffrey A Rock, Matthew J Beutel, Scott C Ofslager
  • Publication number: 20090181276
    Abstract: One embodiment includes a method comprising providing a first catalyst coated gas diffusion media layer, depositing a wet first proton exchange membrane layer over the first catalyst coated gas diffusion media layer to form a first proton exchange membrane layer; providing a second catalyst coated gas diffusion media layer; contacting the second catalyst coated gas diffusion media layer, or second proton exchange membrane layer, with the first proton exchange membrane layer; and hot pressing together the catalyst coated diffusion layers and proton exchange membrane layer(s).
    Type: Application
    Filed: January 11, 2008
    Publication date: July 16, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Matthew J. Beutel, Timothy J. Fuller
  • Publication number: 20090181280
    Abstract: A barrier film for a fuel cell is provided, including a polymeric membrane having a plurality of support features. The support features are adapted to militate against a deflection of the membrane under a pressure differential across the membrane. A fuel cell employing the barrier film has a first plate with a port formed therein, and a second plate disposed adjacent the first plate. The barrier film is disposed between the first plate and the second plate. The support features of the barrier film militate against an intrusion of the membrane into the port. A fuel cell stack formed from a plurality of the fuel cells is also provided.
    Type: Application
    Filed: January 10, 2008
    Publication date: July 16, 2009
    Inventor: Matthew J. Beutel
  • Publication number: 20090181275
    Abstract: A UEA for a fuel cell having an active region and a feed region is provided. The UEA includes an electrolyte membrane disposed between a pair of electrodes. The electrolyte membrane and the pair of electrodes is further disposed between a pair of DM. The electrolyte membrane, the pair of electrodes, and the DM are configured to be disposed at the active region of the fuel cell. A barrier film coupled to the electrolyte membrane is configured to be disposed at the feed region of the fuel cell. The dimensions of the electrolyte membrane are thereby optimized. A fuel cell having the UEA, and a fuel cell stack formed from a plurality of the fuel cells, is also provided.
    Type: Application
    Filed: January 10, 2008
    Publication date: July 16, 2009
    Inventors: Matthew J. Beutel, Saurabh Vyas, Ronald L. James, Steven G. Goebel
  • Patent number: 7497881
    Abstract: A heat exchanger design is provided for optimal transfer of thermal energy between a primary reactor-out reformate and a primary reactor-in steam and air. In particular, one embodiment of the present invention comprises a prime-surface true counter axial flow heat exchanger positioned around the primary reactor.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: March 3, 2009
    Assignee: General Motors Corporation
    Inventors: Steven D. Burch, Matthew J. Beutel, Kevin Stukey
  • Publication number: 20080311459
    Abstract: A fuel cell comprising anode and cathode flow field plates having a multitude of flow channels separated by land features wherein the land features of the anode side are wider than the land features of the cathode side is disclosed. In fuel cells, the flow field plate arrangement of the present invention provides higher power (lower cost per kW), improved durability, and less stringent assembly alignment.
    Type: Application
    Filed: August 29, 2008
    Publication date: December 18, 2008
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Steven G. Goebel, Daniel Miller, Matthew J. Beutel
  • Patent number: 7462415
    Abstract: A fuel cell comprising anode and cathode flow field plates having a multitude of flow channels separated by land features wherein the land features of the anode side are wider than the land features of the cathode side is disclosed. In fuel cells, the flow field plate arrangement of the present invention provides higher power (lower cost per kW), improved durability, and less stringent assembly alignment.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: December 9, 2008
    Assignee: General Motors Corporation
    Inventors: Steven G. Goebel, Daniel Miller, Matthew J. Beutel
  • Publication number: 20070275288
    Abstract: A fuel cell stack that includes straight cathode flow channels and straight anode flow channels through a seal area between bipolar plates in the stack. The fuel cell stack includes a seal that extends around the active area of the stack and between the stack headers and the active area. At the locations where the cathode flow channels extend through a seal area to the cathode input header and the cathode outlet header, and the anode flow channels extend through a seal area to the anode input header and the anode output header, the diffusion media layer on one side of the membrane is extended to provide the seal load. Alternately, shims can be used to carry the seal load.
    Type: Application
    Filed: May 23, 2006
    Publication date: November 29, 2007
    Inventors: Steven G. Goebel, Matthew J. Beutel, Jeffrey A. Rock
  • Patent number: 7270909
    Abstract: A bipolar plate for a PEM fuel cell is disclosed. The plate includes a plurality of channels, wherein the ends of the channels are staggered. The plate also includes a plurality of tunnels, wherein the ends of the tunnels are staggered. The plate further includes a cathode and an anode, wherein a portion of the cathode overhangs a portion of the anode. These staggered/offset features allow for an increase the capillary meniscus of water droplets passing therethrough, allowing for a reduction in the pressure required to move the water through the cell and out to the header volume of the stack.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: September 18, 2007
    Assignee: General Motors Corporation
    Inventors: Matthew J. Beutel, Daniel J. Darga
  • Patent number: 6899861
    Abstract: A heat exchanger design is provided for optimal transfer of thermal energy between a primary reactor-out reformate and a primary reactor-in steam and air. In particular, one embodiment of the present invention comprises a prime-surface true counterflow heat exchanger positioned around the primary reactor. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that is will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: May 31, 2005
    Assignee: General Motors Corporation
    Inventors: Steven D. Burch, Matthew J. Beutel, Kevin Stukey
  • Publication number: 20040262167
    Abstract: A heat exchanger design is provided for optimal transfer of thermal energy between a primary reactor-out reformate and a primary reactor-in steam and air. In particular, one embodiment of the present invention comprises a prime-surface true counterflow heat exchanger positioned around the primary reactor. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that is will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: June 2, 2004
    Publication date: December 30, 2004
    Inventors: Steven D. Burch, Matthew J. Beutel, Kevin Stukey
  • Publication number: 20040018403
    Abstract: A heat exchanger design is provided for optimal transfer of thermal energy between a primary reactor-out reformate and a primary reactor-in steam and air. In particular, one embodiment of the present invention comprises a prime-surface true counterflow heat exchanger positioned around the primary reactor. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that is will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Application
    Filed: July 25, 2002
    Publication date: January 29, 2004
    Inventors: Steven D. Burch, Matthew J. Beutel, Kevin Stukey
  • Patent number: 6669463
    Abstract: The present invention provides a combustor for a fuel processor which integrates a burner and a catalyst. The burner is utilized to quickly heat the catalyst to a light-off temperature to prepare it for normal operation. The heated catalyst is then used to react anode exhaust with air or cathode exhaust under normal operation.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: December 30, 2003
    Assignee: General Motors Corporation
    Inventors: Matthew J. Beutel, William H. Pettit, Steven G. Goebel
  • Publication number: 20030134239
    Abstract: The present invention provides a combustor for a fuel processor which integrates a burner and a catalyst. The burner is utilized to quickly heat the catalyst to a light-off temperature to prepare it for normal operation. The heated catalyst is then used to react anode exhaust with air or cathode exhaust under normal operation.
    Type: Application
    Filed: January 11, 2002
    Publication date: July 17, 2003
    Inventors: Matthew J. Beutel, William H. Pettit, Steven G. Goebel