Patents by Inventor Matthew J. Carty

Matthew J. Carty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220031479
    Abstract: Proprioceptive feedback is provided in a residual limb of a person that includes forming a linkage between a pair of agonist and antagonist muscles, forming a sliding surface over which the agonist and antagonist muscles slide. The sliding surface can include a synovial sleeve, a bridge formed between the distal ends of bones, or a fixture that is osseointegrated into the bone. The invention also includes a system for transdermal electrical communication in a person that includes a percutaneous access device, a sensory device that communicates signals between a muscle and the percutaneous device, and a stimulation device in communication with the percutaneous access device. In another embodiment, a closed-loop functional stimulation system restores lost functionality to a person that suffers from impairment of a neurological control system or at least partial loss of a limb.
    Type: Application
    Filed: October 20, 2021
    Publication date: February 3, 2022
    Inventors: Hugh M. Herr, Tyler Clites, Benjamin Maimon, Anthony Zorzos, Matthew J. Carty, Jean-Francois Duval, Shriya Sruthi Srinivasan
  • Patent number: 11179251
    Abstract: Proprioceptive feedback is provided in a residual limb of a person that includes forming a linkage between a pair of agonist and antagonist muscles, forming a sliding surface over which the agonist and antagonist muscles slide. The sliding surface can include a synovial sleeve, a bridge formed between the distal ends of bones, or a fixture that is osseointegrated into the bone. The invention also includes a system for transdermal electrical communication in a person that includes a percutaneous access device, a sensory device that communicates signals between a muscle and the percutaneous device, and a stimulation device in communication with the percutaneous access device. In another embodiment, a closed-loop functional stimulation system restores lost functionality to a person that suffers from impairment of a neurological control system or at least partial loss of a limb.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: November 23, 2021
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Hugh M. Herr, Tyler Clites, Benjamin Maimon, Anthony Zorzos, Matthew J. Carty, Jean-Francois Duval, Shriya Sruthi Srinivasan
  • Publication number: 20210093470
    Abstract: At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Hugh M. Herr, Ronald R. Riso, Katherine W. Song, Richard J. Casler, JR., Matthew J. Carty
  • Patent number: 10898351
    Abstract: At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: January 26, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Ronald R. Riso, Katherine W. Song, Richard J. Casler, Jr., Matthew J. Carty
  • Publication number: 20190021883
    Abstract: Proprioceptive feedback is provided in a residual limb of a person that includes forming a linkage between a pair of agonist and antagonist muscles, forming a sliding surface over which the agonist and antagonist muscles slide. The sliding surface can include a synovial sleeve, a bridge formed between the distal ends of bones, or a fixture that is osseointegrated into the bone. The invention also includes a system for transdermal electrical communication in a person that includes a percutaneous access device, a sensory device that communicates signals between a muscle and the percutaneous device, and a stimulation device in communication with the percutaneous access device. In another embodiment, a closed-loop functional stimulation system restores lost functionality to a person that suffers from impairment of a neurological control system or at least partial loss of a limb.
    Type: Application
    Filed: January 6, 2017
    Publication date: January 24, 2019
    Inventors: Hugh M. Herr, Tyler Clites, Benjamin Maimon, Anthony Zorzos, Matthew J. Carty, Jean-Francois Duval
  • Publication number: 20160346099
    Abstract: At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
    Type: Application
    Filed: August 10, 2016
    Publication date: December 1, 2016
    Inventors: Hugh M. Herr, Ronald R. Riso, Katherine W. Song, Richard J. Casler, JR., Matthew J. Carty
  • Patent number: 9474634
    Abstract: At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: October 25, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Ronald R. Riso, Katherine W. Song, Richard J. Casler, Jr., Matthew J. Carty
  • Publication number: 20150173918
    Abstract: At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
    Type: Application
    Filed: October 22, 2014
    Publication date: June 25, 2015
    Inventors: Hugh M. Herr, Ronald R. Riso, Katherine W. Song, Richard J. Casler, JR., Matthew J. Carty