Patents by Inventor Matthew J. Norconk

Matthew J. Norconk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10530188
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: January 7, 2020
    Assignee: Philips IP Ventures B.V.
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Patent number: 10512873
    Abstract: An air treatment system having an improved control system. The control system may include a dynamic “dead front” display that varies the display based on mode of operation. The display may include capacitive touch sensors and include an array of capacitive film segments or traces integrated into the display. The control system may include a self-contained electronics module that can be tested and calibrated before installation in the ATS. A dust sensor assembly may be integrated into the electronics module. The front cover may be attached with a mechanical attachment at the top and a magnetic attachment on the bottom. The ATS may include a filter retainer assembly with a rotating clip configured to perform in a cam-like manner to firmly clamp the particulate filter and carbon filter in place.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 24, 2019
    Assignee: Access Business Group International LLC
    Inventors: William T. Stoner, Jr., Terry L. Lautzenheiser, Sean T. Eurich, Matthew J. Norconk
  • Patent number: 10481189
    Abstract: A wireless remote sensor (110) that is powered by an inductive transmitter (112) and is configured to produce an oscillating wave that varies based on one or more sensed parameters. The oscillating wave is communicated to the inductive transmitter (112) by reflected impedance, where it can be detected to determine the sensed value(s). In another aspect, the present invention provides a wireless remote sensor with a Wheatstone bridge arrangement having an internal resonant circuit to produce an electromagnetic field indicative of the sensed value. In a third aspect, the present invention provides a wireless remote sensor with optical feedback from a reference circuit and a sensor circuit. In a fourth aspect, the present invention provides a wireless remote temperature sensor having coils printed on a material with a high coefficient of thermal expansion so that the size and/or shape of the coils varies as the temperature increases or decreases.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 19, 2019
    Assignee: Philips I.P. Ventures B.V.
    Inventors: Neil W. Kuyvenhoven, Cody D. Dean, David W. Baarman, Benjamin C. Moes, Hai D. Nguyen, Matthew J. Norconk, Joshua K. Schwannecke, Joshua B. Taylor, Joseph S. Melton, Jr., Ronald L. Stoddard
  • Patent number: 10277279
    Abstract: A communication system that uses keyed modulation to encode fixed frequency communications on a variable frequency power transmission signal in which a single communication bit is represented by a plurality of modulations. To provide a fixed communication rate, the number of modulations associated with each bit is dynamic varying as a function of the ratio of the communication frequency to the carrier signal frequency. In one embodiment, the present invention provides dynamic phase-shift-keyed modulation in which communications are generated by toggling a load at a rate that is a fraction of the power transfer frequency. In another embodiment, the present invention provides communication by toggling a load in the communication transmitter at a rate that is phase locked and at a harmonic of the power transfer frequency. In yet another embodiment, the present invention provides frequency-shift-keyed modulation, including, for example, modulation at one of two different frequencies.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: April 30, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, Colin J. Moore, Joshua B. Taylor, Neil W. Kuyvenhoven, Dale R. Liff, Jason L. Amistadi, Robert D. Gruich, Arthur Kelley, Kenneth C. Armstrong
  • Patent number: 10250083
    Abstract: The present invention relates to wireless power supplies adapted to supply power and communicate with one or more remote devices. The systems and methods of the present invention generally relate to a communication timing system that may ensure information being communicated does not overlap with that of another device, preventing data collisions and information from going undetected. With information being communicated in a way that addresses or avoids potential communication issues in multiple device systems, the wireless power supply may control operation to effectively supply wireless power.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 2, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, Merdad Veiseh, Dale R. Liff, Mark A. Blaha, Jason L. Amistadi
  • Patent number: 10225966
    Abstract: A composite metal surface that looks metallic, but permits effective transmission of an electromagnetic field. The composite metal surface can be integrated into various electronic equipment, such as telephones, remote controls, battery doors, keyboards, mice, game controllers, cameras, laptops, inductive power supplies, and essentially any other electronic equipment. The composite metal surface can also be integrated into non-electrically conductive heat sinks, high permeability shielding, and polished metal non-electrically conductive surfaces.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: March 5, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: David W. Baarman, Benjamin C. Moes, Neil W. Kuyvenhoven, Joshua K. Schwannecke, Roy M. Taylor, Jr., Kaitlyn J. Turner, Robert Wolford, Matthew J. Norconk, Ryan D. Schamper
  • Patent number: 10199877
    Abstract: The present invention relates to a wireless power supply system including a remote device capable of both transmitting and receiving power wirelessly. The remote device includes a self-driven synchronous rectifier. The wireless power supply system may also include a wireless power supply configured to enter an OFF state in which no power, or substantially no power, is drawn, and to wake from the OFF state in response to receiving power from a remote device.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: February 5, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Joseph C. Van Den Brink, Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, Neil W. Kuyvenhoven, David W. Baarman
  • Patent number: 10193389
    Abstract: A power supply with a multi-bridge topology configured to provide multiple different bridge topologies during operation. The power supply includes a plurality of half-bridge circuits connected to a controller. The controller can selectively configure the power supply between a plurality of different bridge topologies during operation by controlling the half-bridge circuit.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: January 29, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Benjamin C. Moes, Matthew J. Norconk, Joshua B. Taylor, Colin J. Moore
  • Patent number: 10193394
    Abstract: A wireless power receiver capable of receiving wireless power from close-coupled and mid-range wireless power supplies. The wireless power receiver includes a principal and supplemental receiver circuits. The principle receiver circuit is adjustable to operate in a close-coupled mode or a resonator mode. In close-coupled mode, the principle receiver circuit is coupled to the power input of a remote device and functions as the principle power source. In resonator-mode, the principle power circuit is electrically disconnected/isolated from the remote device and forms a closed resonant loop to function as a resonator that amplifies an electromagnetic field from a mid-range wireless power supply. The supplemental receiver circuit is coupled to the power input of the remote device and is configured to receive wireless power from the resonator and function as the power source when the principle receiver circuit is in the resonator mode.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: January 29, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Matthew J. Norconk, Colin J. Moore, Joshua B. Taylor
  • Patent number: 10187042
    Abstract: A wireless power transfer component with a selectively adjustable resonator circuit having a Q control subcircuit that varies the Q factor of the resonator circuit to control the amount of power relayed by the resonator circuit. The resonator circuit may be in the wireless power supply, the wireless power receiver, an intermediate resonator or any combination thereof. The resonator circuit may be actively configured based on a feedback circuit. The feedback circuit may sense a characteristic in the secondary circuit or elsewhere and actively operate the control subcircuit based on the sensed characteristic. The feedback circuit may cause the Q control subcircuit to change (reduce or increase) the Q factor when the sensed characteristic crosses a threshold value. The Q control subcircuit may include a variable resistor having a value that can be varied to adjust the Q factor of the resonator circuit.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: January 22, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: David W. Baarman, Benjamin C. Moes, Joshua K. Schwannecke, Joshua B. Taylor, Neil W. Kuyvenhoven, Matthew J. Norconk, Colin J. Moore, John James Lord, Kristen J. Blood
  • Patent number: 10160667
    Abstract: A dielectric barrier discharge lamp assembly for a fluid treatment system. The lamp assembly can include an inductive secondary, first and second electrodes coupled to the inductive secondary, and a lamp including a dielectric barrier interposed between the first and second electrodes. The dielectric barrier can define a discharge chamber including a discharge gas, and one of the first and second electrodes can extend within the discharge chamber. The inductive secondary can be adapted to receive power from a nearby inductive primary to promote a dielectric barrier discharge in the discharge chamber. The resulting dielectric barrier discharge can generate ultraviolet light for the treatment of air or water, or for other applications.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: December 25, 2018
    Assignee: Access Business Group International LLC
    Inventors: Karlis Vecziedins, Michael E. Miles, Joshua K. Schwannecke, David A. Meekhof, Donovan L. Squires, William T. Stoner, Matthew J. Norconk, Richard B. Bylsma, Matthew J. Lilley
  • Publication number: 20180319678
    Abstract: A dielectric barrier discharge lamp assembly for a fluid treatment system. The lamp assembly can include an inductive secondary, first and second electrodes coupled to the inductive secondary, and a lamp including a dielectric barrier interposed between the first and second electrodes. The dielectric barrier can define a discharge chamber including a discharge gas, and one of the first and second electrodes can extend within the discharge chamber. The inductive secondary can be adapted to receive power from a nearby inductive primary to promote a dielectric barrier discharge in the discharge chamber. The resulting dielectric barrier discharge can generate ultraviolet light for the treatment of air or water, or for other applications.
    Type: Application
    Filed: June 22, 2018
    Publication date: November 8, 2018
    Inventors: Karlis Vecziedins, Michael E. Miles, Joshua K. Schwannecke, David A. Meekhof, Donovan L. Squires, William T. Stoner, Matthew J. Norconk, Richard B. Bylsma, Matthew J. Lilley
  • Publication number: 20180226835
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Application
    Filed: January 17, 2018
    Publication date: August 9, 2018
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Patent number: 10035715
    Abstract: A dielectric barrier discharge lamp assembly for a fluid treatment system. The lamp assembly can include an inductive secondary, first and second electrodes coupled to the inductive secondary, and a lamp including a dielectric barrier interposed between the first and second electrodes. The dielectric barrier can define a discharge chamber including a discharge gas, and one of the first and second electrodes can extend within the discharge chamber. The inductive secondary can be adapted to receive power from a nearby inductive primary to promote a dielectric barrier discharge in the discharge chamber. The resulting dielectric barrier discharge can generate ultraviolet light for the treatment of air or water, or for other applications.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: July 31, 2018
    Inventors: Karlis Vecziedins, Michael E. Miles, Joshua K. Schwannecke, David A. Meekhof, Donovan L. Squires, William T. Stoner, Matthew J. Norconk, Richard B. Bylsma, Matthew J. Lilley
  • Patent number: 9912166
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 6, 2018
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Publication number: 20180036668
    Abstract: An air treatment system having an improved control system. The control system may include a dynamic “dead front” display that varies the display based on mode of operation. The display may include capacitive touch sensors and include an array of capacitive film segments or traces integrated into the display. The control system may include a self-contained electronics module that can be tested and calibrated before installation in the ATS. A dust sensor assembly may be integrated into the electronics module. The front cover may be attached with a mechanical attachment at the top and a magnetic attachment on the bottom. The ATS may include a filter retainer assembly with a rotating clip configured to perform in a cam-like manner to firmly clamp the particulate filter and carbon filter in place.
    Type: Application
    Filed: September 28, 2017
    Publication date: February 8, 2018
    Inventors: William T. Stoner, JR., Terry L. Lautzenheiser, Sean T. Eurich, Matthew J. Norconk
  • Patent number: 9821260
    Abstract: An air treatment system having an improved control system. The control system may include a dynamic “dead front” display that varies the display based on mode of operation. The display may include capacitive touch sensors and include an array of capacitive film segments or traces integrated into the display. The control system may include a self-contained electronics module that can be tested and calibrated before installation in the ATS. A dust sensor assembly may be integrated into the electronics module. The front cover may be attached with a mechanical attachment at the top and a magnetic attachment on the bottom. The ATS may include a filter retainer assembly with a rotating clip configured to perform in a cam-like manner to firmly clamp the particulate filter and carbon filter in place.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: November 21, 2017
    Assignee: Access Business Group International LLC
    Inventors: William T. Stoner, Jr., Terry L. Lautzenheiser, Sean T. Eurich, Matthew J. Norconk
  • Patent number: D832988
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: November 6, 2018
    Assignee: Access Business Group International LLC
    Inventors: William T. Stoner, Jr., Terry L. Lautzenheiser, Steve O. Mork, Sean T. Eurich, Matthew J. Norconk, Gregory K. Evans, Michael Lozano
  • Patent number: D846104
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 16, 2019
    Assignee: Access Business Group International LLC
    Inventors: William T. Stoner, Jr., Terry L. Lautzenheiser, Steve O. Mork, Sean T. Eurich, Matthew J. Norconk, Gregory K. Evans, Michael Lozano
  • Patent number: D846105
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 16, 2019
    Assignee: Access Business Group International LLC
    Inventors: William T. Stoner, Jr., Terry L. Lautzenheiser, Steve O. Mork, Sean T. Eurich, Matthew J. Norconk, Gregory K. Evans, Michael Lozano