Patents by Inventor Matthew J. Vincent

Matthew J. Vincent has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130137910
    Abstract: The present invention provides an improved process for the catalytic conversion of a feedstock comprising an alkylatable aromatic compound and an alkylating agent to form a conversion product comprising the desired alkylaromatic compound by contacting said feedstock in at least partial liquid phase under catalytic conversion conditions with a catalyst composition comprising a porous crystalline material having a structure type of FAU, BEA* or MWW, or a mixture thereof, wherein the porous crystalline material has a Relative Activity measured at 220° C. as an RA220 of at least 7.5 or measured at 180° C. as RA180 of at least 2.5, allowing operation at lower reaction pressures, e.g., a reaction pressure of about 450 psig (3102 kPa) or less, and lower alkylating agent feed supply pressure of 450 psig (3102 kPa) or less.
    Type: Application
    Filed: January 22, 2013
    Publication date: May 30, 2013
    Applicant: ExxonMobil Chemical Patents Inc. and Stone & Webster Process Technology, Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda, Brian Maerz, Maruti Bhandarkar
  • Patent number: 8334419
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g., a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g., MCM-49, or a mixture thereof.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 18, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Patent number: 8222468
    Abstract: The present invention provides a process for conversion of feedstock comprising organic compounds to desirable conversion product at organic compound conversion conditions in the presence of catalyst comprising an acidic, porous crystalline material and having a Proton Density Index of greater than 1.0, for example, from greater than 1.0 to about 2.0, e.g. from about 1.01 to about 1.85. The acidic, porous crystalline material of the catalyst may comprise a porous, crystalline material or molecular sieve having the structure of zeolite Beta, an MWW structure type material, e.g. MCM-22, MCM-36, MCM-49, MCM-56, or a mixture thereof.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: July 17, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Teng Xu, Matthew J. Vincent
  • Patent number: 8198496
    Abstract: This disclosure relates to a process for manufacturing a mono-alkylaromatic aromatic compound, said process comprising contacting a feedstock comprising an alkylatable aromatic compound and an alkylating agent under alkylation reaction conditions with a catalyst comprising EMM-13, wherein said EMM-13 is a molecular sieve comprising a framework of tetrahedral atoms bridged by oxygen atoms, the tetrahedral atom framework being defined by a unit cell with atomic coordinates in nanometers shown in Table 3.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: June 12, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Terry E. Helton, Matthew J. Vincent
  • Patent number: 8138384
    Abstract: In a process for converting methane to alkylated aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst under conditions effective to convert said methane to aromatic hydrocarbons and produce a first effluent stream comprising aromatic hydrocarbons and hydrogen. At least a portion of said aromatic hydrocarbon from said first effluent stream is then contacted with an alkylating agent under conditions effective to alkylate said aromatic hydrocarbon and produce an alkylated aromatic hydrocarbon having more alkyl side chains than said aromatic hydrocarbon prior to the alkylating.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: March 20, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Gary D. Mohr, Matthew J. Vincent
  • Patent number: 8110715
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: February 7, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Matthew J. Vincent
  • Publication number: 20110224468
    Abstract: In a process for alkylation of an alkylatable aromatic compound to produce a monoalkylated aromatic compound, a first feed stream comprising fresh alkylatable aromatic compound is passed to a first reaction zone which comprises a transalkylation catalyst and which also receives a second feed stream comprising polyalkylated aromatic compounds. The first and second feed streams are contacted with the transalkylation catalyst in the first reaction zone under conditions to transalkylate the polyalkylated aromatic compounds with the alkylatable aromatic compound to produce the desired monoalkylated aromatic compound. A first effluent stream comprising unreacted alkylatable aromatic compound and the monoalkylated aromatic compound is removed from the first reaction zone and passed to a fractionation system to separate the first effluent stream into a first light fraction comprising the unreacted alkylatable aromatic compound and a first heavy fraction comprising the monoalkylated aromatic compound.
    Type: Application
    Filed: September 24, 2009
    Publication date: September 15, 2011
    Inventors: Matthew J. Vincent, Charles Morris Smith
  • Publication number: 20110224469
    Abstract: Disclosed is a process for the production of alkylated aromatics by contacting a feed stream comprising an alkylatable aromatic, an alkylating agent and trace amounts of water and impurities in the presence of first and second alkylation catalysts wherein the water and impurities are removed in order to improve the cycle length of such alkylation catalysts. Water and a portion of impurities are removed in a dehydration zone. A first alkylation zone having a first alkylation catalyst which, in some embodiments is a large pore molecular sieve, acts to remove a larger portion of impurities, such as nitrogenous and other species, and to alkylate a smaller portion of the alkylatable aromatic compound. A second alkylation zone, which in some embodiments is a medium pore molecular sieve, acts to remove a smaller portion of impurities, and to alkylate a larger portion of the alkylatable aromatic compound.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 15, 2011
    Inventors: Matthew J. Vincent, Vijay Nanda, Maruti Bhandarkar, Brian Maerz, Terry E. Helton
  • Publication number: 20110178353
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g., a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g., MCM-49, or a mixture thereof.
    Type: Application
    Filed: March 31, 2011
    Publication date: July 21, 2011
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Publication number: 20110166403
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Application
    Filed: March 10, 2011
    Publication date: July 7, 2011
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Matthew J. Vincent
  • Publication number: 20110144401
    Abstract: This disclosure relates to a process for manufacturing a mono-alkylaromatic aromatic compound, said process comprising contacting a feedstock comprising an alkylatable aromatic compound and an alkylating agent under alkylation reaction conditions with a catalyst comprising EMM-13, wherein said EMM-13 is a molecular sieve comprising a framework of tetrahedral atoms bridged by oxygen atoms, the tetrahedral atom framework being defined by a unit cell with atomic coordinates in nanometers shown in Table 3.
    Type: Application
    Filed: July 15, 2009
    Publication date: June 16, 2011
    Inventors: Terry E. Helton, Matthew J. Vincent
  • Patent number: 7939700
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g., a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g., MCM-49, or a mixture thereof.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: May 10, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Patent number: 7928274
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: April 19, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Matthew J. Vincent
  • Publication number: 20110065972
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Application
    Filed: September 16, 2010
    Publication date: March 17, 2011
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Matthew J. Vincent
  • Publication number: 20100280298
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g., a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 4, 2010
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Patent number: 7816574
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Matthew J. Vincent
  • Patent number: 7790940
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g. a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g. MCM-49, or a mixture thereof.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: September 7, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Patent number: 7781636
    Abstract: A process for converting methane to higher hydrocarbon(s) including aromatic hydrocarbon(s) in a reaction zone comprises providing to a hydrocarbon feedstock containing methane and a catalytic particulate material to the reaction zone and contacting the catalytic particulate material and the hydrocarbon feedstock in a substantially countercurrent fashion in the reaction zone, while operating the reaction zone under reaction conditions sufficient to convert at least a portion of said methane to a first effluent having said higher hydrocarbon(s).
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: August 24, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Neeraj Sangar, Elizabeth L. Stavens, Matthew J. Vincent
  • Patent number: 7777087
    Abstract: A process is disclosed for producing an alkylaromatic compound in a multistage reaction system comprising at least first and second series-connected alkylation reaction zones, each containing an alkylation catalyst. A first feed comprising an alkylatable aromatic compound and a second feed comprising an alkene are introduced into the first alkylation reaction zone. The first and second alkylation reaction zones are operated under conditions of temperature and pressure effective to cause alkylation of the aromatic compound with the alkene in the presence of the alkylation catalyst, the temperature and pressure being such that the aromatic compound is at least partly in the liquid phase. The alkylation catalyst in the first alkylation reaction zone, which may be a reactor guard bed, has more acid sites per unit volume of catalyst than the alkylation catalyst in the second reaction zone.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: August 17, 2010
    Assignees: ExxonMobil Chemical Patents Inc., Stone & Webster, Inc.
    Inventors: Michael C. Clark, Vijay Nanda, Chung-Ming Chi, Maruti Bhandarkar, Brian Maerz, Matthew J. Vincent
  • Patent number: 7772447
    Abstract: In a process for converting methane to liquid hydrocarbons, a feed containing methane is contacted with 0 dehydrocyclization catalyst under conditions effective to convert said methane to aromatic hydrocarbons, including benzene and/or naphthalene, and produce a first effluent stream comprising hydrogen and 0t least 5 wt % m>35 aromatic hydrocarbons than said feed. At least part the aromatic hydrocarbons from the first effluent stream is then reacted with hydrogen to produce a second effluent stream having a reduced benzene and/or naphthalene content compared with said first effluent stream.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: August 10, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Matthew J. Vincent