Patents by Inventor Matthew Julian Thompson

Matthew Julian Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10793424
    Abstract: A device with a first MEMS device and a second MEMS device is disclosed. The first MEMS device is configured to sense at least one external influence. The second MEMS device is responsive to the at least one external influence. The first MEMS device is configured to change a state when the at least one external influence exceeds a threshold value. The first MEMS device is configured to retain the state below the threshold value, wherein the change in state of the first MEMS device is done passively and wherein the state of the first MEMS device is indicative of a status of the second MEMS device. In one example, the first MEMS device further comprises a normally open switch that closes when the external influence exceeds the threshold value.
    Type: Grant
    Filed: September 1, 2019
    Date of Patent: October 6, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Stephen Lloyd, Joseph Seeger
  • Publication number: 20200300887
    Abstract: A method of measuring noise of an accelerometer can comprise exposing the accelerometer comprising a micro-electro-mechanical system (MEMS) component coupled to an application specific integrated circuit component (ASIC), to an external environmental input, with the MEMS component being configured to provide a first output to the ASIC based on the external environmental input. The method can further comprise estimating a first noise generated by operation of the MEMS component, and replacing the first output provided to the ASIC from the MEMS component, with a second output generated by a MEMS emulator component, with the second output comprising the first noise. Further, the method can include generating an output of the accelerometer based on the second output processed by the ASIC.
    Type: Application
    Filed: March 19, 2020
    Publication date: September 24, 2020
    Inventors: Sriraman Dakshinamurthy, Matthew Julian Thompson, Vadim Tsinker
  • Publication number: 20200264210
    Abstract: A MEMS accelerometer includes a suspended spring-mass system that has a frequency response to accelerations experienced over a range of frequencies. The components of the suspended spring-mass system such as the proof masses respond to acceleration in a substantially uniform manner at frequencies that fall within a designed bandwidth for the MEMS accelerometer. Digital compensation circuitry compensates for motion of the proof masses outside of the designed bandwidth, such that the functional bandwidth of the MEMS accelerometer is significantly greater than the designed bandwidth.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 20, 2020
    Inventors: Sriraman Dakshinamurthy, Vadim Tsinker, Matthew Julian Thompson
  • Publication number: 20200233011
    Abstract: Exemplary embodiment of a tilting z-axis, out-of-plane sensing MEMS accelerometers and associated structures and configurations are described. Disclosed embodiments facilitate improved offset stabilization. Non-limiting embodiments provide exemplary MEMS structures and apparatuses characterized by one or more of having a sensing MEMS structure that is symmetric about the axis orthogonal to the springs or flexible coupling axis, a spring or flexible coupling axis that is aligned to one of the symmetry axes of the electrodes pattern, a different number of reference electrodes and sense electrodes, a reference MEMS structure having at least two symmetry axes, one which is along the axis of the springs or flexible coupling, and/or a reference structure below the spring or flexible coupling axis.
    Type: Application
    Filed: April 7, 2020
    Publication date: July 23, 2020
    Inventors: Giacomo Laghi, Matthew Julian Thompson, Luca Coronato, Roberto Martini
  • Patent number: 10649001
    Abstract: A MEMS system includes a proof mass, an anchor, an amplifier, first and second sense elements and their corresponding feedback elements. The proof mass moves responsive to a stimulus. The anchor coupled to the proof mass via a spring. The amplifier receives a proof mass signal from the proof mass and amplifies the signal to generate an output signal. The first sense element is connected between the proof mass and a first input signal and the second sense element is connected between the proof mass and a second input signal. The second input signal has a polarity opposite to the first input signal. The first feedback element is connected between the proof mass and the output signal and its charges change responsive to proof mass displacement. The second feedback element is connected between the proof mass and the output signal and its charges change in response to proof mass displacement.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: May 12, 2020
    Assignee: InvenSense, Inc.
    Inventors: Matthew Julian Thompson, Ali Shirvani
  • Patent number: 10649002
    Abstract: Techniques for self-adjusting calibration of offset and sensitivity of a MEMS accelerometer are provided. In one example, a system comprises a first microelectromechanical (MEMS) sensor. The first MEMS sensor comprises: a proof mass coupled to an anchor connected to a reference plane, wherein the proof mass is coupled to the anchor via a first spring and a second spring; a plurality of reference paddles coupled to the anchor; and a plurality of acceleration sensing electrodes disposed on the reference plane, wherein a first area of each of the acceleration sensing electrodes is larger than a second area of each of a plurality of reference electrodes associated with the plurality of reference paddles.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: May 12, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Joseph Seeger, Sarah Nitzan
  • Publication number: 20200064369
    Abstract: A MEMS sensor that comprises a sensing reference plane, at least one anchor coupled to the sensing reference plane, wherein the sensing reference plane is divided by a first and a second axis forming four quadrants on the sensing reference plane, at least one proof mass coupled to the at least one anchor, wherein one of the at least one proof mass moves under an external excitation, and a pattern of sensing elements on the sensing reference plane to detect motion normal of the at least one proof mass relative to the sensing reference plane, wherein the pattern of sensing elements comprises at least three sensing elements in each of the four quadrants.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Applicant: InvenSense, Inc.
    Inventors: Matthew Julian THOMPSON, Kirt Reed WILLIAMS
  • Publication number: 20190382259
    Abstract: A device with a first MEMS device and a second MEMS device is disclosed. The first MEMS device is configured to sense at least one external influence. The second MEMS device is responsive to the at least one external influence. The first MEMS device is configured to change a state when the at least one external influence exceeds a threshold value. The first MEMS device is configured to retain the state below the threshold value, wherein the change in state of the first MEMS device is done passively and wherein the state of the first MEMS device is indicative of a status of the second MEMS device. In one example, the first MEMS device further comprises a normally open switch that closes when the external influence exceeds the threshold value.
    Type: Application
    Filed: September 1, 2019
    Publication date: December 19, 2019
    Inventors: MATTHEW JULIAN THOMPSON, STEPHEN LLOYD, JOSEPH SEEGER
  • Patent number: 10466268
    Abstract: A MEMS sensor that comprises a sensing reference plane, at least one anchor coupled to the sensing reference plane, wherein the sensing reference plane is divided by a first and a second axis forming four quadrants on the sensing reference plane, at least one proof mass coupled to the at least one anchor, wherein one of the at least one proof mass moves under an external excitation, and a pattern of sensing elements on the sensing reference plane to detect motion normal of the at least one proof mass relative to the sensing reference plane, wherein the pattern of sensing elements comprises at least three sensing elements in each of the four quadrants.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: November 5, 2019
    Assignee: InvenSense, Inc.
    Inventors: Matthew Julian Thompson, Kirt Reed Williams
  • Patent number: 10399849
    Abstract: A device with a first MEMS device and a second MEMS device is disclosed. The first MEMS device is configured to sense at least one external influence. The second MEMS device is responsive to the at least one external influence. The first MEMS device is configured to change a state when the at least one external influence exceeds a threshold value. The first MEMS device is configured to retain the state below the threshold value, wherein the change in state of the first MEMS device is done passively and wherein the state of the first MEMS device is indicative of a status of the second MEMS device.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: September 3, 2019
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Stephen Lloyd, Joseph Seeger
  • Patent number: 10393768
    Abstract: A method and system for a sensor system of a device is disclosed. The sensor system includes a first MEMS sensor (FMEMS), a second MEMS sensor (SMEMS) and a signal processor (SP). An excitation is imparted to the device along a first axis (FA). The FMEMS has a first primary sense axis (FPSA), moves in response to a component of the excitation along the FA aligned with the FPSA and outputs a first signal proportional to an excitation along the FPSA. The SMEMS has a second primary sense axis (SPSA), moves in response to a component of the excitation along the FA aligned with the SPSA and outputs a second signal proportional to an excitation along the SPSA. The SP combines the first signal and the second signal to output a third signal proportional to the excitation along the FA. The FA, the FPSA and the SPSA have different orientations.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 27, 2019
    Assignee: Invensense, Inc.
    Inventors: Matthew Julian Thompson, Joseph Seeger
  • Patent number: 10371715
    Abstract: A sensor is disclosed. The sensor includes a substrate and a mechanical structure. The mechanical structure includes at least two proof masses including a first proof mass and a second proof mass. The mechanical structure also includes a flexible coupling between the at least two proof masses and the substrate. The at least two proof masses move in an anti-phase direction normal to the plane of the substrate in response to acceleration of the sensor normal to the plane and move in anti-phase in a direction parallel to the plane of the substrate in response to an acceleration of the sensor parallel to the plane. The at least two proof masses move in a direction parallel to the plane of the substrate in response to an acceleration of the sensor parallel to the plane.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: August 6, 2019
    Assignee: InvenSense, Inc.
    Inventors: Leonardo Baldasarre, Matthew Julian Thompson
  • Publication number: 20190187172
    Abstract: Facilitating self-calibration of a sensor device via modification of a sensitivity of the sensor device is presented herein. A sensor system can comprise a sensor component comprising a sensor that generates an output signal based on an external excitation of the sensor; a sensitivity modification component that modifies a sensitivity of the sensor by a defined amount; and a calibration component that measures a first output value of the output signal before a modification of the sensitivity by the defined amount, measures a second output value of the output signal after the modification of the sensitivity by the defined amount, and determines, based on a difference between the first output value and the second output value, an offset portion of the output signal. Further, the calibration component can modify, based on the offset portion, the output signal.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 20, 2019
    Inventors: Matthew Julian Thompson, David deKoninck, Sarah Nitzan, Houri Johari-Galle
  • Publication number: 20190170786
    Abstract: A MEMS system includes a proof mass, an anchor, an amplifier, first and second sense elements and their corresponding feedback elements. The proof mass moves responsive to a stimulus. The anchor coupled to the proof mass via a spring. The amplifier receives a proof mass signal from the proof mass and amplifies the signal to generate an output signal. The first sense element is connected between the proof mass and a first input signal and the second sense element is connected between the proof mass and a second input signal. The second input signal has a polarity opposite to the first input signal. The first feedback element is connected between the proof mass and the output signal and its charges change responsive to proof mass displacement. The second feedback element is connected between the proof mass and the output signal and its charges change in response to proof mass displacement.
    Type: Application
    Filed: November 21, 2018
    Publication date: June 6, 2019
    Inventors: Matthew Julian THOMPSON, Ali Shirvani
  • Patent number: 10295558
    Abstract: A MEMS sensor includes a sensing reference plane, an anchor, a proof mass, and sensing elements. The anchor is coupled to the sensing reference plane and to the proof mass that moves under an external excitation. The sensing elements detect motion normal to the sensing reference plane. A summation of a product of polarity for each sensing element, its area, and its distance to the anchor on one side of an axis line is unequal to a summation of a product of a polarity associated with each sensing element, its associated area, and its distance to the anchor on another side of the axis line. As such, external excitation creates an offset. The offset is substantially constant for curvature angles (0°-360°) of the sensing reference plane. The offset is greater than zero and is less than a maximum offset for a MEMS sensor with perfect symmetry for its sensing elements.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: May 21, 2019
    Assignee: InvenSense, Inc.
    Inventors: Matthew Julian Thompson, Antonio Molfese
  • Publication number: 20190033342
    Abstract: Techniques for self-adjusting calibration of offset and sensitivity of a MEMS accelerometer are provided. In one example, a system comprises a first microelectromechanical (MEMS) sensor. The first MEMS sensor comprises: a proof mass coupled to an anchor connected to a reference plane, wherein the proof mass is coupled to the anchor via a first spring and a second spring; a plurality of reference paddles coupled to the anchor; and a plurality of acceleration sensing electrodes disposed on the reference plane, wherein a first area of each of the acceleration sensing electrodes is larger than a second area of each of a plurality of reference electrodes associated with the plurality of reference paddles.
    Type: Application
    Filed: July 31, 2017
    Publication date: January 31, 2019
    Inventors: Matthew Julian Thompson, Joseph Seeger, Sarah Nitzan
  • Publication number: 20180196082
    Abstract: A MEMS sensor that comprises a sensing reference plane, at least one anchor coupled to the sensing reference plane, wherein the sensing reference plane is divided by a first and a second axis forming four quadrants on the sensing reference plane, at least one proof mass coupled to the at least one anchor, wherein one of the at least one proof mass moves under an external excitation, and a pattern of sensing elements on the sensing reference plane to detect motion normal of the at least one proof mass relative to the sensing reference plane, wherein the pattern of sensing elements comprises at least three sensing elements in each of the four quadrants.
    Type: Application
    Filed: March 8, 2018
    Publication date: July 12, 2018
    Applicant: InvenSense, Inc.
    Inventors: Matthew Julian THOMPSON, Kirt Reed WILLIAMS
  • Patent number: 9952252
    Abstract: A system and method for reducing offset in a MEMS sensor are disclosed. In a first aspect, the system is a MEMS sensor that comprises a sensing reference plane, at least one anchor coupled to the sensing reference plane, at least one proof mass coupled to the at least one anchor, wherein one of the at least one proof mass moves under an external excitation, a pattern of sensing elements coupled between the sensing reference plane and the at least one proof mass to detect motion normal to the sensing reference plane, wherein the pattern of sensing elements shares at least three axes of polarity anti-symmetry, and a signal processing circuit to combine the pattern of sensing elements thereby providing an output proportional to the external excitation. In a second aspect, the sensing reference plane is divided by two axes forming four quadrants on the sensing reference plane.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: April 24, 2018
    Assignee: InvenSense, Inc.
    Inventors: Matthew Julian Thompson, Kirt Reed Williams
  • Patent number: 9896327
    Abstract: A micro-electro-mechanical system sensor device is disclosed. The sensor device comprises a micro-electro-mechanical system (MEMS) layer, comprising: an actuator layer and a cover layer, wherein a portion of the actuator layer is coupled to the cover layer via a dielectric; and an out-of-plane sense element interposed between the actuator layer and the cover layer, wherein the MEMS device layer is connected to a complementary metal-oxide-semiconductor (CMOS) substrate layer via a spring and an anchor.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: February 20, 2018
    Assignee: INVENSENSE, INC.
    Inventor: Matthew Julian Thompson
  • Patent number: 9840409
    Abstract: A system and method for providing a MEMS sensor are disclosed. In a first aspect, the system is a MEMS sensor that comprises a substrate, an anchor region coupled to the substrate, at least one support arm coupled to the anchor region, at least two guiding arms coupled to and moving relative to the at least one support arm, a plurality of sensing elements disposed on the at least two guiding arms to measure motion of the at least two guiding arms relative to the substrate, and a proof mass system comprising at least one mass coupled to each of the at least two guiding arms by a set of springs. The proof mass system is disposed outside the anchor region, the at least one support arm, the at least two guiding arms, the set of springs, and the plurality of sensing elements.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: December 12, 2017
    Assignee: InvenSense, Inc.
    Inventors: Matthew Julian Thompson, Joseph Seeger