Patents by Inventor Matthew Julian Thompson

Matthew Julian Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069061
    Abstract: A microelectromechanical system device is described. The microelectromechanical system device can comprise: a proof mass coupled to an anchor via a spring, wherein the proof mass moves in response to an imposition of an external load to the proof mass, and an overtravel stop comprising a first portion and a second portion.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Inventors: Matthew Julian Thompson, Robert Walmsley
  • Patent number: 11846648
    Abstract: A microelectromechanical system device is described. The microelectromechanical system device can comprise: a proof mass coupled to an anchor via a spring, wherein the proof mass moves in response to an imposition of an external load to the proof mass, and an overtravel stop comprising a first portion and a second portion.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: December 19, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Robert Walmsley
  • Publication number: 20230365397
    Abstract: A MEMS sensor includes at least one anchor that extends into a MEMS layer and a proof mass suspended from the at least one anchor. Each anchor is coupled to the proof mass via two compliant springs that are oriented perpendicular to each other and attached to a respective anchor. The compliant springs absorb non-measured external forces such as shear forces that are applied to the sensor packaging, preventing these forces from modifying the relative location and operation of the proof mass.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 16, 2023
    Inventors: Mrigank Sharma, Varun Subramaniam Kumar, Luca Coronato, Giacomo Laghi, Matthew Julian Thompson
  • Patent number: 11761977
    Abstract: A MEMS sensor includes a central anchoring region that maintains the relative position of an attached proof mass relative to sense electrodes in the presence of undesired forces and stresses. The central anchoring region includes one or more first anchors that rigidly couple to a cover substrate and a base substrate. One or more second anchors are rigidly coupled to only the cover substrate and are connected to the one or more first anchors within the MEMS layer via an isolation spring. The proof mass in turn is connected to the one or more second anchors via one or more compliant springs.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: September 19, 2023
    Assignee: InvenSense, Inc.
    Inventors: Varun Subramaniam Kumar, Mrigank Sharma, Giacomo Laghi, Luca Coronato, Matthew Julian Thompson
  • Patent number: 11738994
    Abstract: An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: August 29, 2023
    Assignee: InvenSense, Inc.
    Inventors: David deKoninck, Varun Subramaniam Kumar, Matthew Julian Thompson, Vadim Tsinker, Logeeswaran Veerayah Jayaraman, Sarah Nitzan, Houri Johari-Galle, Jongwoo Shin, Le Jin
  • Publication number: 20230221345
    Abstract: A microelectromechanical system device is described. The microelectromechanical system device can comprise: a proof mass coupled to an anchor via a spring, wherein the proof mass moves in response to an imposition of an external load to the proof mass, and an overtravel stop comprising a first portion and a second portion.
    Type: Application
    Filed: January 7, 2022
    Publication date: July 13, 2023
    Inventors: Matthew Julian Thompson, Robert Walmsley
  • Publication number: 20230107211
    Abstract: An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 6, 2023
    Inventors: David deKoninck, Varun Subramaniam Kumar, Matthew Julian Thompson, Vadim Tsinker, Logeeswaran Veerayah Jayaraman, Sarah Nitzan, Houri Johari-Galle, Jongwoo Shin, Le Jin
  • Patent number: 11548780
    Abstract: An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: January 10, 2023
    Assignee: InvenSense, Inc.
    Inventors: David deKoninck, Varun Subramaniam Kumar, Matthew Julian Thompson, Vadim Tsinker, Logeeswaran Veerayah Jayaraman, Sarah Nitzan, Houri Johari-Galle, Jongwoo Shin, Le Jin
  • Patent number: 11287443
    Abstract: A MEMS accelerometer includes a suspended spring-mass system that has a frequency response to accelerations experienced over a range of frequencies. The components of the suspended spring-mass system such as the proof masses respond to acceleration in a substantially uniform manner at frequencies that fall within a designed bandwidth for the MEMS accelerometer. Digital compensation circuitry compensates for motion of the proof masses outside of the designed bandwidth, such that the functional bandwidth of the MEMS accelerometer is significantly greater than the designed bandwidth.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: March 29, 2022
    Assignee: INVENSENSE, INC.
    Inventors: Sriraman Dakshinamurthy, Vadim Tsinker, Matthew Julian Thompson
  • Patent number: 11255876
    Abstract: A method of measuring noise of an accelerometer can comprise exposing the accelerometer comprising a micro-electro-mechanical system (MEMS) component coupled to an application specific integrated circuit component (ASIC), to an external environmental input, with the MEMS component being configured to provide a first output to the ASIC based on the external environmental input. The method can further comprise estimating a first noise generated by operation of the MEMS component, and replacing the first output provided to the ASIC from the MEMS component, with a second output generated by a MEMS emulator component, with the second output comprising the first noise. Further, the method can include generating an output of the accelerometer based on the second output processed by the ASIC.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: February 22, 2022
    Assignee: INVENSENSE, INC.
    Inventors: Sriraman Dakshinamurthy, Matthew Julian Thompson, Vadim Tsinker
  • Publication number: 20220048760
    Abstract: An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 17, 2022
    Inventors: David deKoninck, Varun Subramaniam Kumar, Matthew Julian Thompson, Vadim Tsinker, Logeeswaran Veerayah Jayaraman, Sarah Nitzan, Houri Johari-Galle, Jongwoo Shin, Le Jin
  • Patent number: 11231441
    Abstract: Exemplary embodiment of a tilting z-axis, out-of-plane sensing MEMS accelerometers and associated structures and configurations are described. Disclosed embodiments facilitate improved offset stabilization. Non-limiting embodiments provide exemplary MEMS structures and apparatuses characterized by one or more of having a sensing MEMS structure that is symmetric about the axis orthogonal to the springs or flexible coupling axis, a spring or flexible coupling axis that is aligned to one of the symmetry axes of the electrodes pattern, a different number of reference electrodes and sense electrodes, a reference MEMS structure having at least two symmetry axes, one which is along the axis of the springs or flexible coupling, and/or a reference structure below the spring or flexible coupling axis.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: January 25, 2022
    Assignee: INVENSENSE, INC.
    Inventors: Giacomo Laghi, Matthew Julian Thompson, Luca Coronato, Roberto Martini
  • Patent number: 11186479
    Abstract: An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: November 30, 2021
    Assignee: INVENSENSE, INC.
    Inventors: David deKoninck, Varun Subramaniam Kumar, Matthew Julian Thompson, Vadim Tsinker, Logeeswaran Veerayah Jayaraman, Sarah Nitzan, Houri Johari-Galle, Jongwoo Shin, Le Jin
  • Patent number: 11174153
    Abstract: A microelectromechanical (MEMS) device may be coupled to a dielectric material at an upper planar surface or lower planar surface of the MEMS device. One or more temperature sensors may be attached to the dielectric material layer. Signals from the one or more temperature sensors may be used to determine a thermal gradient along on axis that is normal to the upper planar surface and the lower planar surface. The thermal gradient may be used to compensate for values measured by the MEMS device.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: November 16, 2021
    Assignee: INVENSENSE, INC.
    Inventors: Ilya Gurin, Matthew Julian Thompson, Vadim Tsinker
  • Patent number: 11156631
    Abstract: Facilitating self-calibration of a sensor device via modification of a sensitivity of the sensor device is presented herein. A sensor system can comprise a sensor component comprising a sensor that generates an output signal based on an external excitation of the sensor; a sensitivity modification component that modifies a sensitivity of the sensor by a defined amount; and a calibration component that measures a first output value of the output signal before a modification of the sensitivity by the defined amount, measures a second output value of the output signal after the modification of the sensitivity by the defined amount, and determines, based on a difference between the first output value and the second output value, an offset portion of the output signal. Further, the calibration component can modify, based on the offset portion, the output signal.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: October 26, 2021
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, David deKoninck, Sarah Nitzan, Houri Johari-Galle
  • Patent number: 11073531
    Abstract: A microelectromechanical (MEMS) accelerometer has a proof mass and a fixed electrode. The fixed electrode is located relative to the proof mass such that a capacitance formed by the fixed electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The MEMS accelerometer is exposed to heat sources that produce a z-axis thermal gradient in MEMS accelerometer and an in-plane thermal gradient in the X-Y plane of the MEMS accelerometer. The z-axis thermal gradient is sensed with a plurality of thermistors located relative to anchoring regions of a CMOS layer of the MEMS accelerometer. The configuration of the thermistors within the CMOS layer measures the z-axis thermal gradient while rejecting other lateral thermal gradients. Compensation is performed at the accelerometer based on the z-axis thermal gradient.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: July 27, 2021
    Assignee: INVENSENSE, INC.
    Inventors: David deKoninck, Varun Subramaniam Kumar, Matthew Julian Thompson, Vadim Tsinker, Logeeswaran Veerayah Jayaraman, Sarah Nitzan, Houri Johari-Galle, Jongwoo Shin, Le Jin
  • Publication number: 20210053819
    Abstract: An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: David deKoninck, Varun Subramaniam Kumar, Matthew Julian Thompson, Vadim Tsinker, Logeeswaran Veerayah Jayaraman, Sarah Nitzan, Houri Johari-Galle, Jongwoo Shin, Le Jin
  • Publication number: 20210053820
    Abstract: A microelectromechanical (MEMS) device may be coupled to a dielectric material at an upper planar surface or lower planar surface of the MEMS device. One or more temperature sensors may be attached to the dielectric material layer. Signals from the one or more temperature sensors may be used to determine a thermal gradient along on axis that is normal to the upper planar surface and the lower planar surface. The thermal gradient may be used to compensate for values measured by the MEMS device.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: Ilya Gurin, Matthew Julian Thompson, Vadim Tsinker
  • Publication number: 20210055321
    Abstract: A microelectromechanical (MEMS) accelerometer has a proof mass and a fixed electrode. The fixed electrode is located relative to the proof mass such that a capacitance formed by the fixed electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The MEMS accelerometer is exposed to heat sources that produce a z-axis thermal gradient in MEMS accelerometer and an in-plane thermal gradient in the X-Y plane of the MEMS accelerometer. The z-axis thermal gradient is sensed with a plurality of thermistors located relative to anchoring regions of a CMOS layer of the MEMS accelerometer. The configuration of the thermistors within the CMOS layer measures the z-axis thermal gradient while rejecting other lateral thermal gradients. Compensation is performed at the accelerometer based on the z-axis thermal gradient.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: David deKoninck, Varun Subramaniam Kumar, Matthew Julian Thompson, Vadim Tsinker, Logeeswaran Veerayah Jayaraman, Sarah Nitzan, Houri Johari-Galle, Jongwoo Shin, Le Jin
  • Patent number: 10793424
    Abstract: A device with a first MEMS device and a second MEMS device is disclosed. The first MEMS device is configured to sense at least one external influence. The second MEMS device is responsive to the at least one external influence. The first MEMS device is configured to change a state when the at least one external influence exceeds a threshold value. The first MEMS device is configured to retain the state below the threshold value, wherein the change in state of the first MEMS device is done passively and wherein the state of the first MEMS device is indicative of a status of the second MEMS device. In one example, the first MEMS device further comprises a normally open switch that closes when the external influence exceeds the threshold value.
    Type: Grant
    Filed: September 1, 2019
    Date of Patent: October 6, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Stephen Lloyd, Joseph Seeger