Patents by Inventor Matthew K. Hortop

Matthew K. Hortop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9496572
    Abstract: A fuel cell system is provided that includes a fuel cell stack and an air compressor in communication with a cathode inlet, a hydrogen source in communication with an anode inlet, and a start-up battery adapted to power the air compressor. The start-up battery is at least one of a low-voltage battery and a high-voltage battery. A pressure sensor is in communication with the air compressor and adapted to measure a compressor outlet pressure. A power conversion module is in electrical communication with the start-up battery and the air compressor. A controller is in communication with the power conversion module and adapted to set an air compressor speed based on an available electrical energy. A closed-loop method of operating the fuel cell system at start-up is also provided, wherein an anode purge is scheduled based on an air flow rate calculated from the compressor outlet pressure and the actual speed.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: November 15, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Abdullah B. Alp, Akbar Chowdhury, Matthew C. Kirklin, Matthew K. Hortop, John P. Salvador
  • Publication number: 20160181636
    Abstract: A fuel cell system is provided that includes a fuel cell stack and an air compressor in communication with a cathode inlet, a hydrogen source in communication with an anode inlet, and a start-up battery adapted to power the air compressor. The start-up battery is at least one of a low-voltage battery and a high-voltage battery. A power conversion module is in electrical communication with the start-up battery and the air compressor. The power conversion module is adapted to boost a voltage of the start-up battery as desired and power the air compressor at start-up. A controller is in communication with the power conversion module and is adapted to set an air compressor speed based on an available electrical energy. An open-loop method of operating the fuel cell system at start-up is also provided, wherein an anode purge is scheduled based on the available electrical energy from the battery.
    Type: Application
    Filed: March 11, 2015
    Publication date: June 23, 2016
    Inventors: Abdullah B. Alp, Akbar Chowdhury, Kristian M. Whitehouse, Matthew K. Hortop, Matthew C. Kirklin
  • Patent number: 9005785
    Abstract: A fuel cell system is provided that includes a fuel cell stack and an air compressor in communication with a cathode inlet, a hydrogen source in communication with an anode inlet, and a start-up battery adapted to power the air compressor. The start-up battery is at least one of a low-voltage battery and a high-voltage battery. A power conversion module is in electrical communication with the start-up battery and the air compressor. The power conversion module is adapted to boost a voltage of the start-up battery as desired and power the air compressor at start-up. A controller is in communication with the power conversion module and is adapted to set an air compressor speed based on an available electrical energy. An open-loop method of operating the fuel cell system at start-up is also provided, wherein an anode purge is scheduled based on the available electrical energy from the battery.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Abdullah B. Alp, Akbar Chowdhury, Kristian M. Whitehouse, Matthew K. Hortop, Matthew C. Kirklin
  • Patent number: 9005830
    Abstract: Methods for starting a fuel cell system are provided. In one embodiment, the method includes providing hydrogen to an inlet of an anode of the fuel cell pressurizing the anode to a pressure; determining whether a blocked cell condition exists; if a blocked cell condition exists, if no blocked cell condition exists, initiating a normal start sequence, alternately reducing the pressure of the anode and increasing the pressure of the anode until an exit condition exists, the exit condition selected from a voltage of the fuel cell being stable, or a temperature of the fuel cell being greater than about 0° C., or both, and when the exit condition exists, initiating the normal start sequence.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven G. Goebel, Matthew K. Hortop
  • Patent number: 8574776
    Abstract: A fuel cell system that employs a method for determining the potential that a freeze condition will exist after the system is shut-down based on predetermined input, such as ambient temperature, geographical location, user usage profile, date, weather reports, etc. If the system determines that a freeze condition is probable, then the system initiates a purge shut-down of the fuel cell system where water is purged out of the reactant gas flow channels. If the system determines that a freeze condition is unlikely, then it will initiate a normal shut-down procedure without purging the flow channels. The system will then periodically determine if the conditions have changed, and will initiate the purge if a freeze condition subsequently becomes probable.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: November 5, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Bruce J. Clingerman, Jason R. Kolodziej, Derek S. Kilmer, Pinkhas A. Rapaport, David S. Mathews, Shyam Kocha, Abdullah B. Alp, Matthew K. Hortop, William H. Pettit
  • Publication number: 20120064424
    Abstract: A system and method for determining reactant gas flow through a fuel cell stack to determine potential stack problems, such as a possible low performing fuel cell. The method includes applying a perturbation frequency to the fuel cell stack and measuring the stack current and stack voltage in response thereto. The measured voltage and current are used to determine an impedance of the stack fuel cells, which can then be compared to a predetermined fuel cell impedance for normal stack operation. If an abnormal fuel cell impedance is detected, then the fuel cell system can take corrective action that will address the potential problem.
    Type: Application
    Filed: September 15, 2010
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: ROBERT L. FUSS, CLARK G. HOCHGRAF, MATTHEW K. HORTOP
  • Patent number: 7968240
    Abstract: A fuel cell system is provided that includes a fuel cell stack with a plurality of fuel cells and a power converter in electrical communication with the fuel cell stack. The power converter is configured to selectively regulate a power of the fuel cell stack and short circuit the fuel cell stack, as desired. A method for starting the fuel cell stack is also described, including the steps of causing a short circuit of the fuel cell stack by placing the power converter in a short circuit mode; introducing a hydrogen to the anodes of the fuel cell stack to displace a quantity of air on the anodes; and placing the power converter in a power regulation mode. A degradation of the fuel cell stack during start-up is thereby militated against.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: June 28, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Clark G. Hochgraf, Robert S. Foley, Matthew K. Hortop, Balasubramanian Lakshmanan
  • Patent number: 7862943
    Abstract: A hybrid fuel cell system that employs a fuel cell stack and an ultracapacitor. A diode is provided on a high voltage electrical bus between the fuel cell stack and the ultracapacitor so that high voltage from the ultracapacitor does not affect the operation of the fuel cell stack. During system start-up, a by-pass switch is closed to by-pass the ultracapacitor so that power from the ultracapacitor can be used to start various system loads, such as a cathode side air compressor that provides air to the fuel cell stack. A 12 volt-to-high voltage converter is employed to provide a low power, high voltage supply from a low voltage battery to the system loads at start-up when the by-pass switch is opened, but before a fuel cell stack switch is closed.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: January 4, 2011
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Matthew K. Hortop, David John Keyes, Ellen Greifenstein, Kazuyuki Izawa, Kengo Ikeya
  • Publication number: 20100143813
    Abstract: Methods for starting a fuel cell system are provided. In one embodiment, the method includes providing hydrogen to an inlet of an anode of the fuel cell pressurizing the anode to a pressure; determining whether a blocked cell condition exists; if a blocked cell condition exists, if no blocked cell condition exists, initiating a normal start sequence, alternately reducing the pressure of the anode and increasing the pressure of the anode until an exit condition exists, the exit condition selected from a voltage of the fuel cell being stable, or a temperature of the fuel cell being greater than about 0° C., or both, and when the exit condition exists, initiating the normal start sequence.
    Type: Application
    Filed: February 16, 2010
    Publication date: June 10, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Steven G. Goebel, Matthew K. Hortop
  • Publication number: 20100040931
    Abstract: A fuel cell system that includes a single enclosure for all of a fuel cell stack and other stack critical electronics and components, such as power distribution components, voltage monitoring and detecting components, electrical isolation components, etc. The single enclosure offers a number of advantages, such as reduced weight and reduced complexity for service and safety.
    Type: Application
    Filed: August 12, 2008
    Publication date: February 18, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Matthew K. Hortop, Bernd Peter Elgas, Robert S. Foley, David John Keyes
  • Publication number: 20100028727
    Abstract: A hybrid fuel cell system that employs a fuel cell stack and an ultracapacitor. A diode is provided on a high voltage electrical bus between the fuel cell stack and the ultracapacitor so that high voltage from the ultracapacitor does not affect the operation of the fuel cell stack. During system start-up, a by-pass switch is closed to by-pass the ultracapacitor so that power from the ultracapacitor can be used to start various system loads, such as a cathode side air compressor that provides air to the fuel cell stack. A 12 volt-to-high voltage converter is employed to provide a low power, high voltage supply from a low voltage battery to the system loads at start-up when the by-pass switch is opened, but before a fuel cell stack switch is closed.
    Type: Application
    Filed: August 1, 2008
    Publication date: February 4, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Matthew K. Hortop, David John Keyes, Ellen Greifenstein, Kazuyuki Izawa, Kengo Ikeya
  • Publication number: 20100003546
    Abstract: A fuel cell system is provided that includes a fuel cell stack with a plurality of fuel cells and a power converter in electrical communication with the fuel cell stack. The power converter is configured to selectively regulate a power of the fuel cell stack and short circuit the fuel cell stack, as desired. A method for starting the fuel cell stack is also described including the steps of causing a short circuit of the fuel cell stack by placing the power converter in a short circuit mode; introducing a hydrogen to the anodes of the fuel cell stack to displace a quantity of air on the anodes; and placing the power converter in a power regulation mode. A degradation of the fuel cell stack during start-up is thereby militated against.
    Type: Application
    Filed: January 15, 2008
    Publication date: January 7, 2010
    Inventors: Clark G. Hochgraf, Robert S. Foley, Matthew K. Hortop, Balasubramanian Lakshmanan
  • Patent number: 7608351
    Abstract: A system and method for providing dynamic cathode stoichiometry control in a fuel cell during stack load transients to minimize relative humidity excursions. Particularly, changes in the cathode stoichiometry is controlled as a function of time in response to a decrease or increase in stack current density. Thus, if the stack current density drops to a predetermined current density, the dynamic stoichiometry logic will monitor the low power condition and determine if the condition is sustained, i.e., for an extended period of time. If the low power condition is not sustained, then the cathode stoichiometry does not change, but if it is sustained, then the cathode stoichiometry is increased. The same delay in changing the cathode stoichiometry can be provided for a transition from a low power condition to a high power condition.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: October 27, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Manish Sinha, David A. Arthur, Matthew K. Hortop
  • Publication number: 20090081502
    Abstract: A fuel cell system is provided that includes a fuel cell stack and an air compressor in communication with a cathode inlet, a hydrogen source in communication with an anode inlet, and a start-up battery adapted to power the air compressor. The start-up battery is at least one of a low-voltage battery and a high-voltage battery. A power conversion module is in electrical communication with the start-up battery and the air compressor. The power conversion module is adapted to boost a voltage of the start-up battery as desired and power the air compressor at start-up. A controller is in communication with the power conversion module and is adapted to set an air compressor speed based on an available electrical energy. An open-loop method of operating the fuel cell system at start-up is also provided, wherein an anode purge is scheduled based on the available electrical energy from the battery.
    Type: Application
    Filed: September 24, 2007
    Publication date: March 26, 2009
    Inventors: ABDULLAH B. ALP, Akbar Chowdhury, Kristian M. Whitehouse, Matthew K. Hortop, Matthew C. Kirklin
  • Publication number: 20090081490
    Abstract: A fuel cell system is provided that includes a fuel cell stack and an air compressor in communication with a cathode inlet, a hydrogen source in communication with an anode inlet, and a start-up battery adapted to power the air compressor. The start-up battery is at least one of a low-voltage battery and a high-voltage battery. A pressure sensor is in communication with the air compressor and adapted to measure a compressor outlet pressure. A power conversion module is in electrical communication with the start-up battery and the air compressor. A controller is in communication with the power conversion module and adapted to set an air compressor speed based on an available electrical energy. A closed-loop method of operating the fuel cell system at start-up is also provided, wherein an anode purge is scheduled based on an air flow rate calculated from the compressor outlet pressure and the actual speed.
    Type: Application
    Filed: September 21, 2007
    Publication date: March 26, 2009
    Inventors: Abdullah B. Alp, Akbar Chowdhury, Matthew C. Kirklin, Matthew K. Hortop, John P. Salvador
  • Patent number: 7329469
    Abstract: A printed circuit board that enables electrical communication between a fuel cell stack and measuring electronics includes a substrate having first and second sides and a plurality of pad sets formed in the substrate. Each of the pad sets includes a plurality of conductive pads that enable electrical communication between the first and second sides and a plurality of fusable links that enable electrical communication between the conductive pads on the first side. Each of the pad sets aligns with a corresponding separator plate to enable electrical communication between the separator plate and the measuring electronics.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: February 12, 2008
    Assignee: General Motors Corporation
    Inventor: Matthew K Hortop
  • Publication number: 20070298289
    Abstract: A fuel cell system that employs a method for determining the potential that a freeze condition will exist after the system is shut-down based on predetermined input, such as ambient temperature, geographical location, user usage profile, date, weather reports, etc. If the system determines that a freeze condition is probable, then the system initiates a purge shut-down of the fuel cell system where water is purged out of the reactant gas flow channels. If the system determines that a freeze condition is unlikely, then it will initiate a normal shut-down procedure without purging the flow channels. The system will then periodically determine if the conditions have changed, and will initiate the purge if a freeze condition subsequently becomes probable.
    Type: Application
    Filed: June 27, 2006
    Publication date: December 27, 2007
    Inventors: Bruce J. Clingerman, Jason R. Kolodziej, Derek S. Kilmer, Pinkhas A. Rapaport, David S. Mathews, Shyam Kocha, Abdullah B. Alp, Matthew K. Hortop, William H. Pettit
  • Patent number: 6749452
    Abstract: A fuel cell monitor connector electrically connects a fuel cell monitor to a fuel cell stack. The fuel cell monitor connector includes a non-conductive housing. First connectors on the housing align with second connectors located on fuel cell plates of the fuel cell stack. A third connector on the housing mates with a fourth connector coupled to the monitor. Conductors connect the first connectors to the third connector. A clamping device includes a lever and has locked and released positions. When the clamping device is in the locked position, the first connectors retain the second connectors. When the clamping device is in the released position, the first connectors release the second connectors. The clamping device is a zero insertion force connector.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: June 15, 2004
    Assignee: General Motors Corporation
    Inventors: Matthew K. Hortop, William S. Wheat, Patricia J. Nelson
  • Patent number: 6706430
    Abstract: A gas flow control system for a fuel cell includes a gas supply and a humidifier. A fuel cell stack includes a cathode flow line with an inlet and an outlet. The inlet of the cathode flow line is connected to the outlet of the humidifier. A combustor includes an inlet that receives gas from the outlet of the cathode flow line. A valve and a bypass line bypass gas around the humidifier and the fuel cell stack to the combustor. The valve is preferably one of a gas restriction valve, a throttle valve, and a directional valve. A gas flow sensor generates a gas flow signal based on gas flowing through at least one of the humidifier, the cathode flow line of the fuel cell stack, and the bypass line. A flow controller that is connected to the gas flow sensor and the valve controls the valve based on the gas flow signal.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: March 16, 2004
    Assignee: General Motors Corporation
    Inventors: William S. Wheat, Derek S. Kilmer, Bruce J. Clingerman, Matthew K. Hortop
  • Publication number: 20030186573
    Abstract: A fuel cell monitor connector electrically connects a fuel cell monitor to a fuel cell stack. The fuel cell monitor connector includes a non-conductive housing. First connectors on the housing align with second connectors located on fuel cell plates of the fuel cell stack. A third connector on the housing mates with a fourth connector coupled to the monitor. Conductors connect the first connectors to the third connector. A clamping device includes a lever and has locked and released positions. When the clamping device is in the locked position, the first connectors retain the second connectors. When the clamping device is in the released position, the first connectors release the second connectors. The clamping device is a zero insertion force connector.
    Type: Application
    Filed: March 14, 2002
    Publication date: October 2, 2003
    Inventors: Matthew K. Hortop, William S. Wheat, Patricia J. Nelson