Patents by Inventor Matthew L. Mitchell

Matthew L. Mitchell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8064771
    Abstract: A system, apparatus and method are described for deployment of a control loop between optical or electro-optical modules and a multiplexing module to provide a desired power profile of banded optical channel groups. The power output characteristics of the optical or electro-optical modules, the properties of the transmission paths of the banded optical channel groups, and other factors may be analyzed to allow the control loop to achieve the desired power profile on the banded optical channel groups. The control loop may adjust the output power on the optical or electro-optical modules so that the banded optical channel groups are delivered to an optical component, such as an optical multiplexer or photo-detector, having a particular optical power profile.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: November 22, 2011
    Assignee: Infinera Corporation
    Inventors: Matthew L. Mitchell, Robert B. Taylor, Vincent G. Dominic, Alan C. Nilsson
  • Publication number: 20110249936
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: February 7, 2011
    Publication date: October 13, 2011
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, JR., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Ting-Kuang Chiang, Marco E. Sosa
  • Publication number: 20110243552
    Abstract: Optical autodiscovery is provide between two optical modules to insure that when an optical signal is coupled between the two optical module, the optical signal from a first module does not interfere with operation of a second module. The autodiscovery is implemented by sending an optical identification signal from the first optical module via the coupling to the second optical module from which signal, the second optical module can verify and determined acceptance of the coupled first optical module. During this autodiscovery process, the optical identification signal from the first optical module may be attenuated or shifted in optical spectrum so as not to interfere with the operation of the second optical module. Autodiscovery may also be employed in cases where a first optical module is to receive an optical signal from a second module.
    Type: Application
    Filed: January 31, 2011
    Publication date: October 6, 2011
    Inventors: Matthew L. Mitchell, Robert B. Taylor, Alan C. Nilsson, Steven Joseph Hand, Daniel P. Murphy
  • Patent number: 7885492
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: February 8, 2011
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Ting-Kuang Chiang, Marco E. Sosa
  • Patent number: 7881612
    Abstract: Optical autodiscovery is provide between two optical modules to insure that when an optical signal is coupled between the two optical module, the optical signal from a first module does not interfere with operation of a second module. The autodiscovery is implemented by sending an optical identification signal from the first optical module via the coupling to the second optical module from which signal, the second optical module can verify and determined acceptance of the coupled first optical module. During this autodiscovery process, the optical identification signal from the first optical module may be attenuated or shifted in optical spectrum so as not to interfere with the operation of the second optical module. Autodiscovery may also be employed in cases where a first optical module is to receive an optical signal from a second module.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: February 1, 2011
    Assignee: Infinera Corporation
    Inventors: Matthew L. Mitchell, Robert B. Taylor, Alan C. Nilsson, Steven Joseph Hand, Daniel P. Murphy
  • Patent number: 7773837
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: August 10, 2010
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7751658
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: July 6, 2010
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Charles H. Joyner
  • Publication number: 20100086307
    Abstract: Consistent with the present disclosure optical interleaver and deinterleaver circuits are integrated onto a substrate. The inputs to the interleaver and the outputs of the deinterleaver are each coupled to a corresponding variable optical attenuator (VOA) and optical tap, which are also provided on the substrate. The optical taps supply a portion of the output of each VOA to a corresponding photodetector. A control circuit, which is coupled to the photodetector, in turn, supplies a control signal to each VOA based on the output of the photodetector. Accordingly, optical multiplexing and demultiplexing components, as well as monitoring and power regulating components are provided on the same chip. Such a chip may be compact, relatively inexpensive, and has reduced power consumption compared to optical multiplexer and demultiplexer equipment including discrete components.
    Type: Application
    Filed: June 5, 2009
    Publication date: April 8, 2010
    Inventors: Matthew L. Mitchell, Michael Van Leeuwen
  • Patent number: 7680368
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: March 16, 2010
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7634195
    Abstract: A digital optical network (DON) is a new approach to low-cost, more compact optical transmitter modules and optical receiver modules for deployment in optical transport networks (OTNs). One important aspect of a digital optical network is the incorporation in these modules of transmitter photonic integrated circuit (TxPIC) chips and receiver photonic integrated circuit (TxPIC) chips in lieu of discrete modulated sources and detector sources with discrete multiplexers or demultiplexers.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: December 15, 2009
    Assignee: Infinera Corporation
    Inventors: Jagdeep Singh, Drew Perkins, David F. Welch, Mark Yin, Fred A. Kish, Jr., Stephen G. Grubb, Robert R. Taylor, Vincent G. Dominic, Matthew L. Mitchell, James R. Dodd, Jr.
  • Patent number: 7627254
    Abstract: A system, apparatus and method are described for controlling the gain across one or more amplifier nodes within an optical span. In one embodiment, a fast local amplifier constant gain control loop is provided that maintains a constant gain across an amplifier node for each of the channels within an optical signal. A slow link level gain setting control loop is provided to set and/or adjust the target gain on the amplifier node(s). A gain adjust sequence is performed by the slow link level gain setting control loop to adjust the target gain(s) in response to various events and mechanisms. A “time of flight” protection method is also provided to ensure consistency between the fast local amplifier gain control loop and the slow link level gain setting control loop.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: December 1, 2009
    Assignee: Infinera Corporation
    Inventors: Matthew L. Mitchell, Robert B. Taylor, Edward E. Sprague
  • Patent number: 7519246
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: April 14, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Ting-Kuang Chiang, Robert Grencavich, Vinh D. Nguyen, Donald J. Pavinski, Jr., Marco E. Sosa
  • Patent number: 7512295
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: March 31, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Publication number: 20090022452
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: September 29, 2008
    Publication date: January 22, 2009
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, JR., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7477807
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: January 13, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Publication number: 20080138088
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: July 5, 2007
    Publication date: June 12, 2008
    Applicant: INFINERA CORPORATION
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7340122
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 4, 2008
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7295783
    Abstract: A digital optical network (DON) is a new approach to low-cost, more compact optical transmitter modules and optical receiver modules for deployment in optical transport networks (OTNs). One important aspect of a digital optical network is the incorporation in these modules of transmitter photonic integrated circuit (TxPIC) chips and receiver photonic integrated circuit (RxPIC) chips in lieu of discrete modulated sources and detector sources with discrete multiplexers or demultiplexers.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: November 13, 2007
    Assignee: Infinera Corporation
    Inventors: Jagdeep Singh, Drew D. Perkins, David F. Welch, Mark Yin, Fred A. Kish, Jr., Stephen G. Grubb, Robert R. Taylor, Vincent G. Dominic, Matthew L. Mitchell, James R. Dodd, Jr.
  • Patent number: 7283694
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: October 16, 2007
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7149433
    Abstract: A digital signal channel bypass is provided as bypass around an optical network optical amplifier, in particular, an analog type optical amplifier, such as an EDFA, in an optical transport network or system. The digital signal bypass provides for an ability to maintain the existing optical amplifier OO amplification site while inserting a bypass that provides ultra low-cost OEO REGEN in a digital optical network (DON) utilizing both semiconductor electronic integrated circuit chips and semiconductor photonic integrated circuit (PIC) chips where all the optical components are in semiconductor integrated chip form providing 1R, 2R, 3R or 4R regeneration as well as other signal caring functionality. A salient feature of the digital signal bypass is to regenerate signals in the optical span that are outside the gain bandwidth of the EDFA or other such amplifier.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: December 12, 2006
    Assignee: Infineria Corporation
    Inventors: Stephen G. Grubb, Matthew L. Mitchell, Robert B. Taylor, Vincent G. Dominic, Alan C. Nilsson