Patents by Inventor Matthew L. Severson

Matthew L. Severson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9267989
    Abstract: Provided are apparatus and methods for testing an integrated circuit. In an exemplary method for testing an integrated circuit, a test controller and a power manager are integrated into a main power domain of the integrated circuit. The test controller can be Joint Test Action Group-compatible. An isolation signal is generated using the power manager. The isolation signal can comprise at least one of a freeze signal configured to isolate an input-output port of the integrated circuit, and a clamp signal configured to isolate a functional module of the integrated circuit. The isolation signal can be stored in a boundary scan register controlled with the test controller. The main power domain is isolated from a power-collapsible domain of the integrated circuit with the isolation signal. Power of the power-collapsible domain is collapsed. When power is collapsed, the power-collapsible domain is tested using the test controller and the power manager.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: February 23, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Wei Chen, Yucong Tao, Matthew L. Severson, Jeffrey R. Gemar, Chang Yong Yang
  • Publication number: 20140223250
    Abstract: Provided are apparatus and methods for testing an integrated circuit. In an exemplary method for testing an integrated circuit, a test controller and a power manager are integrated into a main power domain of the integrated circuit. The test controller can be Joint Test Action Group-compatible. An isolation signal is generated using the power manager. The isolation signal can comprise at least one of a freeze signal configured to isolate an input-output port of the integrated circuit, and a clamp signal configured to isolate a functional module of the integrated circuit. The isolation signal can be stored in a boundary scan register controlled with the test controller. The main power domain is isolated from a power-collapsible domain of the integrated circuit with the isolation signal. Power of the power-collapsible domain is collapsed. When power is collapsed, the power-collapsible domain is tested using the test controller and the power manager.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 7, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Wei Chen, Yucong Tao, Matthew L. Severson, Jeffrey R. Gemar, Chang Yong Yang
  • Patent number: 8760217
    Abstract: A semiconductor device having an on-chip voltage regulator to control on-chip voltage regulation and methods for on-chip voltage regulation are disclosed. A semiconductor device includes a circuit positioned between a ground bus and a power bus. A power switch array is positioned between the circuit and one of the ground bus or the power bus to generate a virtual voltage across the circuit. A monitor is positioned between the ground bus and the power bus. The monitor is configured to simulate a critical path of the circuit and to output a voltage adjust signal based on an output of the simulated critical path. A controller is configured to receive the voltage adjust signal and to output a control signal to the power switch array to control the virtual voltage.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 24, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Lew G. Chua-Eoan, Charlie Matar, Matthew L. Severson, Xiaohua Kong
  • Patent number: 8713388
    Abstract: In examples, apparatus and methods are provided for an integrated circuit. The integrated circuit includes a first integrated circuit portion having a main power domain and a second integrated circuit portion having a collapsible power domain. The integrated circuit also has a level shifter having an input coupled to the second circuit portion and an output coupled to the first integrated circuit portion. The level shifter is configured to hold constant the level shifter output when power to the collapsible power domain is collapsed. A quiescent drain current measurement circuit can be coupled to test at least a part of the second integrated circuit portion. A boundary scan register can be coupled between the level shifter output and the first integrated circuit portion. The integrated circuit can also include a power management circuit.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: April 29, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Wei Chen, Yucong Tao, Matthew L. Severson, Jeffrey R. Gemar, Chang Yong Yang
  • Patent number: 8634790
    Abstract: A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: January 21, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Paul E. Peterzell, Christian Holenstein, Inyup Kang, Tao Li, Matthew L. Severson
  • Patent number: 8626099
    Abstract: A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: January 7, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Tao Li, Christian Holenstein, Inyup Kang, Brett C. Walker, Paul E. Peterzell, Raghu Challa, Matthew L. Severson, Arun Raghupathy, Gilbert Christopher Sih
  • Patent number: 8615212
    Abstract: A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: December 24, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Tao Li, Christian Holenstein, Inyup Kang, Brett C. Walker, Paul E. Peterzell, Raghu Challa, Matthew L. Severson, Arun Raghupathy, Gilbert Christopher Sih
  • Patent number: 8447007
    Abstract: A shared real-time counter is configured to provide an accurate counter output based on a fast clock period when driven by a fast clock signal or by a slow clock signal. Combinational logic circuitry provides glitch free switching between a fast clock signal input to the counter and a slow clock input to the counter. The counter is always on and increases its count by an appropriate rational number of counts representing fast clock cycles for every cycle of the fast clock while in a fast clock mode, and by an appropriate rational number of fast clock periods for every cycle of the slow clock signal while in a slow clock mode.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: May 21, 2013
    Assignee: QUALCOMM Incorporated
    Inventor: Matthew L. Severson
  • Patent number: 8433944
    Abstract: In a particular embodiment, a single step increment calculation module is responsive to a first ramp control value and a second ramp control value. The single step increment calculation module generates a single step frequency adjustment as an output. The generated single step frequency adjustment is applied to a system clock signal having a first frequency to change the system clock signal to a second clock signal having a second frequency. The first frequency is different from the second frequency and the system clock signal has a first duty cycle that is within a tolerance range of a second duty cycle of the second clock signal.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: April 30, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Srinjoy Das, Haikun Zhu, Kevin R. Bowles, Matthew L. Severson
  • Publication number: 20130015893
    Abstract: A shared real-time counter is configured to provide an accurate counter output based on a fast clock period when driven by a fast clock signal or by a slow clock signal. Combinational logic circuitry provides glitch free switching between a fast clock signal input to the counter and a slow clock input to the counter.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: QUALCOMM INCORPORATED
    Inventor: Matthew L. Severson
  • Publication number: 20120218005
    Abstract: A semiconductor device having an on-chip voltage regulator to control on-chip voltage regulation and methods for on-chip voltage regulation are disclosed. A semiconductor device includes a circuit positioned between a ground bus and a power bus. A power switch array is positioned between the circuit and one of the ground bus or the power bus to generate a virtual voltage across the circuit. A monitor is positioned between the ground bus and the power bus. The monitor is configured to simulate a critical path of the circuit and to output a voltage adjust signal based on an output of the simulated critical path. A controller is configured to receive the voltage adjust signal and to output a control signal to the power switch array to control the virtual voltage.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Applicant: QUALCOMM Incorporated
    Inventors: Lew G. Chua-Eoan, Charles Matar, Matthew L. Severson, Xiaohua Kong
  • Publication number: 20120216089
    Abstract: In examples, apparatus and methods are provided for an integrated circuit. The integrated circuit includes a first integrated circuit portion having a main power domain and a second integrated circuit portion having a collapsible power domain. The integrated circuit also has a level shifter having an input coupled to the second circuit portion and an output coupled to the first integrated circuit portion. The level shifter is configured to hold constant the level shifter output when power to the collapsible power domain is collapsed. A quiescent drain current measurement circuit can be coupled to test at least a part of the second integrated circuit portion. A boundary scan register can be coupled between the level shifter output and the first integrated circuit portion. The integrated circuit can also include a power management circuit.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 23, 2012
    Applicant: QUALCOMM Incorporated
    Inventors: Wei Chen, Yucong Tao, Matthew L. Severson, Jeffrey R. Gemar, Chang Yong Yang
  • Patent number: 8063664
    Abstract: An integrated circuit includes multiple power domains. Supply current switch circuits (SCSCs) are distributed across each power domain. When a signal is present on a control node within a SCSC, the SCSC couples a local supply bus of the power domain to a global supply bus. An enable signal path extends through the SCSCs so that an enable signal can be propagated down a chain of SCSCs from control node to control node, thereby turning the SCSCs on one by one. When the domain is to be powered up, a control circuit asserts an enable signal that propagates down a first chain of SCSCs. After a programmable amount of time, the control circuit asserts a second enable signal that propagates down a second chain. By spreading the turning on of SCSCs over time, large currents that would otherwise be associated with coupling the local and global buses together are avoided.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 22, 2011
    Assignee: QUALCOMM Incorporated
    Inventors: Lew G Chua-Eoan, Matthew L Severson, Sorin A Dobre, Tsvetomir P Petrov, Rajat Goel
  • Publication number: 20110248764
    Abstract: In a particular embodiment, a single step increment calculation module is responsive to a first ramp control value and a second ramp control value. The single step increment calculation module generates a single step frequency adjustment as an output. The generated single step frequency adjustment is applied to a system clock signal having a first frequency to change the system clock signal to a second clock signal having a second frequency. The first frequency is different from the second frequency and the system clock signal has a first duty cycle that is within a tolerance range of a second duty cycle of the second clock signal.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 13, 2011
    Applicant: QUALCOMM INCORPORATED
    Inventors: Srinjoy Das, Haikun Zhu, Kevin R. Bowles, Matthew L. Severson
  • Publication number: 20110105070
    Abstract: A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
    Type: Application
    Filed: March 14, 2006
    Publication date: May 5, 2011
    Inventors: Tao Li, Christian Holenstein, Inyup Kang, Brett C. Walker, Paul E. Peterzell, Raghu Challa, Matthew L. Severson, Arun Raghupathy, Gilbert Christopher Sih
  • Patent number: 7174190
    Abstract: A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: February 6, 2007
    Assignee: Qualcomm Inc.
    Inventors: Brett C. Walker, Paul E. Peterzell, Tao Li, Matthew L. Severson
  • Patent number: 7098715
    Abstract: A counter for synthesizing clock signals with minimal jitter analyzes an ongoing count to determine whether the rising edge of an output clock should be triggered by the rising edge or falling edge of an input clock signal and to further determine whether the falling edge of the output clock should be triggered by the rising or the falling edge of the falling edge of the input clock signal. The counter may be implemented as a M/N:D counter in which a phase accumulator is compared to predetermined values to select the rising and falling edges of the output clock signal. In a default condition, the rising and falling edges of the output clock signal are triggered by rising edges of the input clock signal. However, if the accumulated phase value is greater than or equal to M/2 and less than M, an overriding signal will trigger the rising edge of the output clock based on the falling edge of the previous input clock cycle.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: August 29, 2006
    Assignee: QUALCOMM Incorporated
    Inventor: Matthew L. Severson
  • Patent number: 7076225
    Abstract: A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: July 11, 2006
    Assignee: Qualcomm Incorporated
    Inventors: Tao Li, Christian Holenstein, Inyup Kang, Brett C. Walker, Paul E. Peterzell, Raghu Challa, Matthew L. Severson, Arun Raghupathy, Gilbert Christopher Sih
  • Publication number: 20040263221
    Abstract: A counter for synthesizing clock signals with minimal jitter analyzes an ongoing count to determine whether the rising edge of an output clock should be triggered by the rising edge or falling edge of an input clock signal and to further determine whether the falling edge of the output clock should be triggered by the rising or the falling edge of the falling edge of the input clock signal. The counter may be implemented as a M/N:D counter in which a phase accumulator is compared to predetermined values to select the rising and falling edges of the output clock signal. In a default condition, the rising and falling edges of the output clock signal are triggered by rising edges of the input clock signal. However, if the accumulated phase value is greater than or equal to M/2 and less than M, an overriding signal will trigger the rising edge of the output clock based on the falling edge of the previous input clock cycle.
    Type: Application
    Filed: January 26, 2004
    Publication date: December 30, 2004
    Inventor: Matthew L. Severson
  • Patent number: 6775530
    Abstract: A method and device for converting at least one narrow band RF signal, being suitable for transmission between at least one communications device suitable for receiving wide-band RF signals and at least one base station, to baseband. The method includes directly down-converting a signal spectrum including the at least one RF narrow-band signal to baseband such that the at least one narrow-band RF signal results at a low intermediate frequency (IF). And, digitally phase rotating the down-converted signal spectrum such that the at least one narrow-band RF signal is phase rotated from the low-IF to baseband.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: August 10, 2004
    Assignee: Qualcomm Inc.
    Inventors: Matthew L. Severson, Inyup Kang, Arun Raghupathy