Patents by Inventor Matthew L. Tingey

Matthew L. Tingey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11676891
    Abstract: A package substrate and package assembly including a package substrate including a substrate body including electrical routing features therein and a surface layer and a plurality of first and second contact points on the surface layer including a first pitch and a second pitch, respectively, wherein the plurality of first contact points and the plurality of second contact points are continuous posts to the respective ones of the electrical routing features. A method including forming first conductive vias in a package assembly, wherein the first conductive vias include substrate conductive vias to electrical routing features in a package substrate and bridge conductive vias to bridge surface routing features of a bridge substrate; forming a first surface layer and a second surface layer on the package substrate; and forming second conductive vias through each of the first surface layer and the second surface layer to the bridge conductive vias.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: June 13, 2023
    Assignee: Intel Corporation
    Inventors: Hongxia Feng, Dingying David Xu, Sheng C. Li, Matthew L. Tingey, Meizi Jiao, Chung Kwang Christopher Tan
  • Publication number: 20230022714
    Abstract: A package substrate and package assembly including a package substrate including a substrate body including electrical routing features therein and a surface layer and a plurality of first and second contact points on the surface layer including a first pitch and a second pitch, respectively, wherein the plurality of first contact points and the plurality of second contact points are continuous posts to the respective ones of the electrical routing features. A method including forming first conductive vias in a package assembly, wherein the first conductive vias include substrate conductive vias to electrical routing features in a package substrate and bridge conductive vias to bridge surface routing features of a bridge substrate; forming a first surface layer and a second surface layer on the package substrate; and forming second conductive vias through each of the first surface layer and the second surface layer to the bridge conductive vias.
    Type: Application
    Filed: September 29, 2022
    Publication date: January 26, 2023
    Inventors: Hongxia Feng, Dungying David Xu, Sheng C. Li, Matthew L. Tingey, Meizi Jiao, Chung Kwang Christopher Tan
  • Publication number: 20210327800
    Abstract: A package substrate and package assembly including a package substrate including a substrate body including electrical routing features therein and a surface layer and a plurality of first and second contact points on the surface layer including a first pitch and a second pitch, respectively, wherein the plurality of first contact points and the plurality of second contact points are continuous posts to the respective ones of the electrical routing features. A method including forming first conductive vias in a package assembly, wherein the first conductive vias include substrate conductive vias to electrical routing features in a package substrate and bridge conductive vias to bridge surface routing features of a bridge substrate; forming a first surface layer and a second surface layer on the package substrate; and forming second conductive vias through each of the first surface layer and the second surface layer to the bridge conductive vias.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: Hongxia FENG, Dingying David XU, Sheng C. LI, Matthew L. TINGEY, Meizi JIAO, Chung Kwang Christopher TAN
  • Patent number: 11088062
    Abstract: A package substrate and package assembly including a package substrate including a substrate body including electrical routing features therein and a surface layer and a plurality of first and second contact points on the surface layer including a first pitch and a second pitch, respectively, wherein the plurality of first contact points and the plurality of second contact points are continuous posts to the respective ones of the electrical routing features. A method including forming first conductive vias in a package assembly, wherein the first conductive vias include substrate conductive vias to electrical routing features in a package substrate and bridge conductive vias to bridge surface routing features of a bridge substrate; forming a first surface layer and a second surface layer on the package substrate; and forming second conductive vias through each of the first surface layer and the second surface layer to the bridge conductive vias.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: August 10, 2021
    Assignee: Intel Corporation
    Inventors: Hongxia Feng, Dingying David Xu, Sheng C. Li, Matthew L. Tingey, Meizi Jiao, Chung Kwang Christopher Tan
  • Publication number: 20190027431
    Abstract: A package substrate and package assembly including a package substrate including a substrate body including electrical routing features therein and a surface layer and a plurality of first and second contact points on the surface layer including a first pitch and a second pitch, respectively, wherein the plurality of first contact points and the plurality of second contact points are continuous posts to the respective ones of the electrical routing features. A method including forming first conductive vias in a package assembly, wherein the first conductive vias include substrate conductive vias to electrical routing features in a package substrate and bridge conductive vias to bridge surface routing features of a bridge substrate; forming a first surface layer and a second surface layer on the package substrate; and forming second conductive vias through each of the first surface layer and the second surface layer to the bridge conductive vias.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 24, 2019
    Inventors: Hongxia FENG, Dingying David XU, Sheng C. LI, Matthew L. TINGEY, Meizi JIAO, Chung Kwang Christopher TAN
  • Patent number: 9142421
    Abstract: Techniques are disclosed for double patterning of a lithographic feature using a barrier layer between the pattern layers. In some cases, the techniques may be implemented with double patterning of a one- or two-dimensional photolithographic feature, for example. In some embodiments, the barrier layer is deposited to protect a first photoresist pattern prior to application of a second photoresist pattern thereon and/or to tailor (e.g., shrink) one or more of the critical dimensions of a trench, hole, or other etchable geometric feature to be formed in a substrate or other suitable surface via lithographic processes. In some embodiments, the techniques may be implemented to generate/print small features (e.g., less than or equal to about 100 nm) including one- and two-dimensional features/structures of varying complexity.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: September 22, 2015
    Assignee: INTEL CORPORATION
    Inventors: Charles H. Wallace, Swaminathan Sivakumar, Matthew L. Tingey, Chanaka D. Munasinghe, Nadia M. Rahhal-Orabi
  • Publication number: 20140017899
    Abstract: Techniques are disclosed for double patterning of a lithographic feature using a barrier layer between the pattern layers. In some cases, the techniques may be implemented with double patterning of a one- or two-dimensional photolithographic feature, for example. In some embodiments, the barrier layer is deposited to protect a first photoresist pattern prior to application of a second photoresist pattern thereon and/or to tailor (e.g., shrink) one or more of the critical dimensions of a trench, hole, or other etchable geometric feature to be formed in a substrate or other suitable surface via lithographic processes. In some embodiments, the techniques may be implemented to generate/print small features (e.g., less than or equal to about 100 nm) including one- and two-dimensional features/structures of varying complexity.
    Type: Application
    Filed: December 29, 2011
    Publication date: January 16, 2014
    Inventors: Charles H. Wallace, Swaminathan Sivakumar, Matthew L. Tingey, Chanaka D. Munasinghe, Nadia M. Rahhal-Orabi
  • Patent number: 8409690
    Abstract: Nanowires suspended from a substrate surface and methods of making nanowires suspended from a substrate surface are provided. The suspended nanowires are comprised of a variety of materials, including metals and mixtures of metals. Suspended nanowires supply large surface areas for applications such as, for example, energy storage and catalysis. Embodiments of the invention provide three dimensional nanowires attached to a substrate surface and arrays of three dimensional nanowires.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: April 2, 2013
    Assignee: Intel Corporation
    Inventors: Charles H. Wallace, Matthew L. Tingey, Bradford L. Sun, Timothy L. Hehr
  • Patent number: 8133680
    Abstract: The present invention provides methods, devices and kits for detecting a ligand. The methods involve capturing a ligand from a sample with an affinity substrate that includes a receptor for a ligand, transferring captured ligand to a detection surface and detecting the ligand on the detection surface with a liquid crystal. Accordingly, the capture step is decoupled from the detection step.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: March 13, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Nicholas L. Abbott, Matthew L. Tingey, Brian H. Clare, Chang-Hyun Jang
  • Publication number: 20110274882
    Abstract: Nanowires suspended from a substrate surface and methods of making nanowires suspended from a substrate surface are provided. The suspended nanowires are comprised of a variety of materials, including metals and mixtures of metals. Suspended nanowires supply large surface areas for applications such as, for example, energy storage and catalysis. Embodiments of the invention provide three dimensional nanowires attached to a substrate surface and arrays of three dimensional nanowires.
    Type: Application
    Filed: May 7, 2010
    Publication date: November 10, 2011
    Inventors: Charles H. Wallace, Matthew L. Tingey, Bradford L. Sun, Timothy L. Hehr