Patents by Inventor Matthew Last
Matthew Last has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220113419Abstract: One example system comprises an active sensor that includes a transmitter and a receiver, a first camera that detects external light originating from one or more external light sources to generate first image data, a second camera that detects external light originating from one or more external light sources to generate second image data, and a controller. The controller is configured to perform operations comprising determining a first distance estimate to a first object based on a comparison of the first image data and the second image data, determining a second distance estimate to the first object based on active sensor data, comparing the first distance estimate and the second distance estimate, and determining a third distance estimate to a second object based on the first image data, the second image data, and the comparison of the first and second distance estimates.Type: ApplicationFiled: October 13, 2020Publication date: April 14, 2022Inventors: Shashank Sharma, Matthew Last
-
Patent number: 11206732Abstract: The present disclosure relates to optical systems and methods of their manufacture. An example system includes a printed circuit board assembly (PCBA) and an image sensor package coupled to the PCBA by way of a plurality of bond members. The system additionally includes a sensor holder coupled to the PCBA. The image sensor package and the sensor holder are coupled to the PCBA so as to minimize thermally-induced stresses in at least one of: the plurality of bond members, the PCBA, the sensor holder, or the image sensor package.Type: GrantFiled: July 2, 2019Date of Patent: December 21, 2021Assignee: Waymo LLCInventors: Matthew Last, Unique Rahangdale, Giulia Guidi, Roya Mirhosseini-Schubert
-
Publication number: 20210382154Abstract: The present disclosure relates to optical systems and methods of their operation. An example optical system includes an optical component and one or more light sources configured to emit a light signal. The light signal interacts with the optical component so as to provide an interaction light signal. The optical system also includes a detector configured to detect at least a portion of the interaction light signal as a detected light signal. The optical system additionally includes a controller configured to carry out operations including causing the one or more light sources to emit the light signal and receiving the detected light signal from the detector. The operations also include determining, based on the detected light signal, that one or more defects are associated with the optical component.Type: ApplicationFiled: August 18, 2021Publication date: December 9, 2021Inventors: Ralph Shepard, Pierre-Yves Droz, Matthew Last, Bryce Remesch
-
Publication number: 20210343687Abstract: The present disclosure relates to optical systems and methods for their manufacture. An example optical system includes a first substrate having a mounting surface and a spacer structure having at least one cavity. The spacer structure is coupled to the mounting surface of the first substrate. The optical system also includes a light-emitter device that is coupled to the spacer structure and a detector device coupled to the first substrate such that the at least one detector device is disposed within the at least one cavity of the spacer structure. The optical system also includes a second substrate that mounts a lens and a waveguide and is coupled to the spacer structure. The optical system also includes a shim coupled between the second surface of the spacer structure and a mounting surface of the second substrate.Type: ApplicationFiled: July 19, 2021Publication date: November 4, 2021Inventors: Matthew Last, Ajaya Chilumula
-
Patent number: 11137485Abstract: The present disclosure relates to optical systems and methods of their operation. An example optical system includes an optical component and one or more light sources configured to emit a light signal. The light signal interacts with the optical component so as to provide an interaction light signal. The optical system also includes a detector configured to detect at least a portion of the interaction light signal as a detected light signal. The optical system additionally includes a controller configured to carry out operations including causing the one or more light sources to emit the light signal and receiving the detected light signal from the detector. The operations also include determining, based on the detected light signal, that one or more defects are associated with the optical component.Type: GrantFiled: August 6, 2019Date of Patent: October 5, 2021Assignee: Waymo LLCInventors: Ralph Shepard, Pierre-Yves Droz, Matthew Last, Bryce Remesch
-
Patent number: 11088127Abstract: The present disclosure relates to optical systems and methods for their manufacture. An example optical system includes a first substrate having a mounting surface and a spacer structure having at least one cavity. The spacer structure is coupled to the mounting surface of the first substrate. The optical system also includes a light-emitter device that is coupled to the spacer structure and a detector device coupled to the first substrate such that the at least one detector device is disposed within the at least one cavity of the spacer structure. The optical system also includes a second substrate that mounts a lens and a waveguide and is coupled to the spacer structure. The optical system also includes a shim coupled between the second surface of the spacer structure and a mounting surface of the second substrate.Type: GrantFiled: May 20, 2020Date of Patent: August 10, 2021Assignee: Waymo LLCInventors: Matthew Last, Ajaya Chilumula
-
Publication number: 20210143606Abstract: The present disclosure relates to optical systems and methods for their manufacture. An example method includes coupling a first surface of a light-emitter substrate to a reference surface of a carrier substrate. The method also includes registering a mold structure with respect to the reference surface of the carrier substrate. Furthermore, the method includes using the mold structure to form an optical material over at least a portion of the light-emitter substrate. The optical material is shaped according to a shape of the mold structure and includes at least one registration feature. The method also includes coupling an optical lens element to the optical material such that the optical lens element is registered to the at least one registration feature.Type: ApplicationFiled: January 19, 2021Publication date: May 13, 2021Inventors: Paul Karplus, Matthew Last
-
Publication number: 20210096319Abstract: The technology relates to lens assemblies for sensor units that provide a low but consistent preload force over the entire operational temperature range of the device. Consistent preloading helps to avoid cracking and plastic deformation. In particular, a compliant structure of a polymeric material is able to expand and contract across temperature extremes. In addition, the polymeric material is arranged in conjunction with a retainer ring to form a discontinuous seal with the lens. This provides in a leak path that is able to reduce condensation or contaminants. As a result, moisture within the sensor unit is permitted to escape, reducing or eliminating impairments on the lens or other parts of the sensor unit that could otherwise impair device operation.Type: ApplicationFiled: September 27, 2019Publication date: April 1, 2021Inventors: Matthew Last, John Henrie, Chandra Kakani, Ralph Shepard, Drew Ulrich
-
Patent number: 10931080Abstract: The present disclosure relates to optical systems and methods for their manufacture. An example method includes coupling a first surface of a light-emitter substrate to a reference surface of a carrier substrate. The method also includes registering a mold structure with respect to the reference surface of the carrier substrate. Furthermore, the method includes using the mold structure to form an optical material over at least a portion of the light-emitter substrate. The optical material is shaped according to a shape of the mold structure and includes at least one registration feature. The method also includes coupling an optical lens element to the optical material such that the optical lens element is registered to the at least one registration feature.Type: GrantFiled: September 17, 2018Date of Patent: February 23, 2021Assignee: Waymo LLCInventors: Paul Karplus, Matthew Last
-
Publication number: 20210041542Abstract: The present disclosure relates to optical systems and methods of their operation. An example optical system includes an optical component and one or more light sources configured to emit a light signal. The light signal interacts with the optical component so as to provide an interaction light signal. The optical system also includes a detector configured to detect at least a portion of the interaction light signal as a detected light signal. The optical system additionally includes a controller configured to carry out operations including causing the one or more light sources to emit the light signal and receiving the detected light signal from the detector. The operations also include determining, based on the detected light signal, that one or more defects are associated with the optical component.Type: ApplicationFiled: August 6, 2019Publication date: February 11, 2021Inventors: Ralph Shepard, Pierre-Yves Droz, Matthew Last, Bryce Remesch
-
Publication number: 20210007216Abstract: The present disclosure relates to optical systems and methods of their manufacture. An example system includes a printed circuit board assembly (PCBA) and an image sensor package coupled to the PCBA by way of a plurality of bond members. The system additionally includes a sensor holder coupled to the PCBA. The image sensor package and the sensor holder are coupled to the PCBA so as to minimize thermally-induced stresses in at least one of: the plurality of bond members, the PCBA, the sensor holder, or the image sensor package.Type: ApplicationFiled: July 2, 2019Publication date: January 7, 2021Inventors: Matthew Last, Unique Rahangdale, Giulia Guidi, Roya Mirhosseini-Schubert
-
Publication number: 20200279839Abstract: The present disclosure relates to optical systems and methods for their manufacture. An example optical system includes a first substrate having a mounting surface and a spacer structure having at least one cavity. The spacer structure is coupled to the mounting surface of the first substrate. The optical system also includes a light-emitter device that is coupled to the spacer structure and a detector device coupled to the first substrate such that the at least one detector device is disposed within the at least one cavity of the spacer structure. The optical system also includes a second substrate that mounts a lens and a waveguide and is coupled to the spacer structure. The optical system also includes a shim coupled between the second surface of the spacer structure and a mounting surface of the second substrate.Type: ApplicationFiled: May 20, 2020Publication date: September 3, 2020Inventors: Matthew Last, Ajaya Chilumula
-
Patent number: 10707195Abstract: The present disclosure relates to optical systems and methods for their manufacture. An example optical system includes a first substrate having a mounting surface and a spacer structure having at least one cavity. The spacer structure is coupled to the mounting surface of the first substrate. The optical system also includes a light-emitter device that is coupled to the spacer structure and a detector device coupled to the first substrate such that the at least one detector device is disposed within the at least one cavity of the spacer structure. The optical system also includes a second substrate that mounts a lens and a waveguide and is coupled to the spacer structure. The optical system also includes a shim coupled between the second surface of the spacer structure and a mounting surface of the second substrate.Type: GrantFiled: October 9, 2018Date of Patent: July 7, 2020Assignee: Waymo LLCInventors: Matthew Last, Ajaya Chilumula
-
Publication number: 20200111768Abstract: The present disclosure relates to optical systems and methods for their manufacture. An example optical system includes a first substrate having a mounting surface and a spacer structure having at least one cavity. The spacer structure is coupled to the mounting surface of the first substrate. The optical system also includes a light-emitter device that is coupled to the spacer structure and a detector device coupled to the first substrate such that the at least one detector device is disposed within the at least one cavity of the spacer structure. The optical system also includes a second substrate that mounts a lens and a waveguide and is coupled to the spacer structure. The optical system also includes a shim coupled between the second surface of the spacer structure and a mounting surface of the second substrate.Type: ApplicationFiled: October 9, 2018Publication date: April 9, 2020Inventors: Matthew Last, Ajaya Chilumula
-
Publication number: 20200091676Abstract: The present disclosure relates to optical systems and methods for their manufacture. An example method includes coupling a first surface of a light-emitter substrate to a reference surface of a carrier substrate. The method also includes registering a mold structure with respect to the reference surface of the carrier substrate. Furthermore, the method includes using the mold structure to form an optical material over at least a portion of the light-emitter substrate. The optical material is shaped according to a shape of the mold structure and includes at least one registration feature. The method also includes coupling an optical lens element to the optical material such that the optical lens element is registered to the at least one registration feature.Type: ApplicationFiled: September 17, 2018Publication date: March 19, 2020Inventors: Paul Karplus, Matthew Last
-
Patent number: 9086738Abstract: An optical tracking device that is capable of operation on both glossy and diffuse surfaces includes at least one housing, at least one light source, and at least one sensor. The light source emits light toward a surface on which the housing is moved and the sensor receives the light emitted by the light source after it is reflected off of the surface. The light source is oriented such that the angle of incidence of the emitted light corresponds to Brewster's angle. The sensor may be also oriented such that the angle of reflection of the reflected light corresponds to Brewster's angle. The light emitted by the light source may be polarized to increase the p-polarization of the emitted light and/or the light received by the sensor may be filtered to block s-polarized portions of the reflected light.Type: GrantFiled: March 12, 2013Date of Patent: July 21, 2015Assignee: Apple Inc.Inventors: Omar Sze Leung, Matthew Last
-
Publication number: 20140268150Abstract: An optical tracking device that is capable of operation on both glossy and diffuse surfaces includes at least one housing, at least one light source, and at least one sensor. The light source emits light toward a surface on which the housing is moved and the sensor receives the light emitted by the light source after it is reflected off of the surface. The light source is oriented such that the angle of incidence of the emitted light corresponds to Brewster's angle. The sensor may be also oriented such that the angle of reflection of the reflected light corresponds to Brewster's angle. The light emitted by the light source may be polarized to increase the p-polarization of the emitted light and/or the light received by the sensor may be filtered to block s-polarized portions of the reflected light.Type: ApplicationFiled: March 12, 2013Publication date: September 18, 2014Applicant: Apple Inc.Inventors: Omar Sze Leung, Matthew Last
-
Publication number: 20130285263Abstract: A sensor array package can include a sensor disposed on a first side of a substrate. Signal trenches can be formed along the edges of the substrate and a conductive layer can be deposited in the signal trench and can couple to sensor signal pads. Bond wires can be attached to the conductive layers and can be arranged to be below a surface plane of the sensor. The sensor array package can be embedded in a printed circuit board enabling the bond wires to terminate at other conductors within the printed circuit board.Type: ApplicationFiled: September 30, 2012Publication date: October 31, 2013Applicant: APPLE INC.Inventors: Shawn X. ARNOLD, Terry L. GILTON, Matthew LAST
-
Patent number: 8218918Abstract: A scalable optical switch especially useful for switching multimode beams carried by optical fibers. Light from an input fiber is focused by a lens which is moved in an x-y direction perpendicular to the beam direction in order to switch the beam from one output fiber to a different fiber. In preferred embodiments the beam can be directed to any one of as many as 90 output fibers. Techniques for scaling the switch to produce N×N switches with N being large are described. Embodiments of the present invention can also be utilized to create more elaborate fiber optical switches such as an N×N switch and a N2×N switch.Type: GrantFiled: March 18, 2010Date of Patent: July 10, 2012Assignee: Trex Enterprises CorpInventors: Hus Tigli, Matthew Last, Yoshi Taketomi
-
Publication number: 20110206317Abstract: A scalable optical switch especially useful for switching multimode beams carried by optical fibers. Light from an input fiber is focused by a lens which is moved in an x-y direction perpendicular to the beam direction in order to switch the beam from one output fiber to a different fiber. In preferred embodiments the beam can be directed to any one of as many as 90 output fibers. Techniques for scaling the switch to produce N×N switches with N being large are described. Embodiments of the present invention can also be utilized to create more elaborate fiber optical switches such as an N×N switch and a N2×N switch.Type: ApplicationFiled: March 18, 2010Publication date: August 25, 2011Inventors: Hus Tigli, Matthew Last, Yoshi Taketomi