Patents by Inventor Matthew M. Philippi

Matthew M. Philippi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230350101
    Abstract: An optical film for reducing at least one of sparkle and moire in a display system includes a structured first major surface that, in at least a first cross-section in a first plane substantially orthogonal to the optical film, has a sinusoidal shape having a variable pitch of greater than about 0.5 microns. For a substantially normally incident light and blue, green, and red wavelengths that are at least 50 nm apart from each other and are disposed within respective blue, green, and red wavelength ranges, optical transmissions of the optical film versus transmitted angle for the blue, green and red wavelengths have respective blue, green, and red transmission bands disposed at angles greater than about 1 degree and having respective blue, green, and red full width at half maxima (FWHMs), at least two of which at least partially overlap.
    Type: Application
    Filed: April 25, 2023
    Publication date: November 2, 2023
    Inventors: Gary T. Boyd, David A. Rosen, Tao Liu, Matthew M. Philippi, Brett J. Sitter
  • Publication number: 20230266622
    Abstract: A liquid crystal display comprises a backlight module comprising a reflective polarizing film, a light control film and a liquid crystal panel disposed between the backlight module and the light control film. The light control film comprises a light input surface and a light output surface opposite the light input surface and alternating transmissive and absorptive regions disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 24, 2023
    Inventors: Nicholas A. Johnson, Encai Hao, Matthew M. Philippi
  • Patent number: 11668977
    Abstract: A liquid crystal display comprises a backlight module comprising a reflective polarizing film, a light control film and a liquid crystal panel disposed between the backlight module and the light control film. The light control film comprises a light input surface and a light output surface opposite the light input surface and alternating transmissive and absorptive regions disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: June 6, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Nicholas A. Johnson, Encai Hao, Matthew M. Philippi
  • Publication number: 20220043309
    Abstract: A liquid crystal display comprises a backlight module comprising a reflective polarizing film, a light control film and a liquid crystal panel disposed between the backlight module and the light control film. The light control film comprises a light input surface and a light output surface opposite the light input surface and alternating transmissive and absorptive regions disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30.
    Type: Application
    Filed: December 10, 2019
    Publication date: February 10, 2022
    Inventors: Nicholas A. Johnson, Encai Hao, Matthew M. Philippi
  • Patent number: 10761320
    Abstract: An optical stack including a periodically varying optical film layer and a grating assembly for reducing moiré is described. The grating assembly includes first and second layers where an interface between the first and second layers define a grating having a peak to valley height and an index contrast. The index contrast multiplied by the peak to valley height may be between 150 nm and 350 nm and the grating has a pitch in the range of 2 micrometers to 50 micrometers. Each of the first and second layers may be viscoelastic or elastomeric adhesive layers, crosslinked resin layers, or soluble resin layers.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: September 1, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Brett J. Sitter, Matthew M. Philippi, Mary M. Pichotta, Chi Zhang, Daniel W. Hennen, Gary T. Boyd, Michael E. Lauters
  • Publication number: 20180329207
    Abstract: An optical stack including a periodically varying optical film layer and a grating assembly for reducing moiré is described. The grating assembly includes first and second layers where an interface between the first and second layers define a grating having a peak to valley height and an index contrast. The index contrast multiplied by the peak to valley height may be between 150 nm and 350 nm and the grating has a pitch in the range of 2 micrometers to 50 micrometers. Each of the first and second layers may be viscoelastic or elastomeric adhesive layers, crosslinked resin layers, or soluble resin layers.
    Type: Application
    Filed: November 29, 2016
    Publication date: November 15, 2018
    Inventors: Brett J. Sitter, Matthew M. Philippi, Mary M. Pichotta, Chi Zhang, Daniel W. Hennen, Gary T. Boyd, Michael E. Lauters
  • Publication number: 20160245486
    Abstract: The present disclosure describes advanced lighting elements, in particular solid-state lighting elements, and luminaires that include an array of lighting elements. The lighting elements, and luminaires including the lighting elements can exhibit benefits that include high optical efficiency and therefore high luminous efficacy; extraordinary directional control and therefore extraordinary glare control and efficacy of delivered lumens; and exceptional mixing of individual-device emission providing exceptional suppression of punch-through and color breakup. In many cases, the architecture can be amenable to low-cost manufacturing in a modular format.
    Type: Application
    Filed: October 15, 2014
    Publication date: August 25, 2016
    Inventors: David G. Freier, Michael A. Meis, Thomas R. Hoffend, Jr., Anthony J. Piekarczyk, Scott E. Simons, Matthew M. Philippi, Kenneth A. P. Meyer