Patents by Inventor Matthew Matsumoto

Matthew Matsumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145607
    Abstract: Wire-based metallization and stringing techniques for solar cells, and the resulting solar cells, modules, and equipment, are described. In an example, a string of solar cells includes a plurality of back-contact solar cells, wherein each of the plurality of back-contact solar cells includes P-type and N-type doped diffusion regions. A plurality of conductive wires is disposed over a back surface of each of the plurality of solar cells, wherein each of the plurality of conductive wires is substantially parallel to the P-type and N-type doped diffusion regions of each of the plurality of solar cells. One or more of the plurality of conductive wires adjoins a pair of adjacent solar cells of the plurality of solar cells and has a relief feature between the pair of adjacent solar cells.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 2, 2024
    Inventors: RICHARD HAMILTON SEWELL, MATTHIEU MINAULT REICH, ANDREA R. BOWRING, ARBAZ SHAKIR, RYAN REAGAN, MATTHEW MATSUMOTO
  • Patent number: 11941932
    Abstract: The present disclosure provides methods, devices, and systems for controlling access to a controlled area. The method may comprise receiving a credential identifier in an access controller associated with an entrance to the enclosed area, and then authenticating the credential identifier. The method may then comprise sending an unlock signal through a solid state relay within the access controller to power a lock associated with but external to the access controller to unlock a door at the entrance to the enclosed area when the credential identifier has been successfully authenticated.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: March 26, 2024
    Assignee: Isonas, Inc.
    Inventors: Michael Radicella, Roger Matsumoto, Matthew J. Morrison, Richard Burkley, Kriston Chapman, Shirl Jones
  • Publication number: 20240092935
    Abstract: The present disclosure provides anti-Tn antibodies (e.g., BaGs6 and/or Remab6) having superior specificity for Tn antigen on cancer cells. Also provided herein, are nucleic acids, vectors, or vector sets that encode the anti-Tn antibody.
    Type: Application
    Filed: October 9, 2020
    Publication date: March 21, 2024
    Applicant: Beth Israel Deaconess Medical Center, Inc.
    Inventors: Richard D. Cummings, Elliot Chaikof, Yasuyuki Matsumoto, Matthew R. Kudelka
  • Patent number: 11901470
    Abstract: Wire-based metallization and stringing techniques for solar cells, and the resulting solar cells, modules, and equipment, are described. In an example, a string of solar cells includes a plurality of back-contact solar cells, wherein each of the plurality of back-contact solar cells includes P-type and N-type doped diffusion regions. A plurality of conductive wires is disposed over a back surface of each of the plurality of solar cells, wherein each of the plurality of conductive wires is substantially parallel to the P-type and N-type doped diffusion regions of each of the plurality of solar cells. One or more of the plurality of conductive wires adjoins a pair of adjacent solar cells of the plurality of solar cells and has a relief feature between the pair of adjacent solar cells.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: February 13, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Richard Hamilton Sewell, Matthieu Minault Reich, Andrea R. Bowring, Arbaz Shakir, Ryan Reagan, Matthew Matsumoto
  • Publication number: 20210098641
    Abstract: Wire-based metallization and stringing techniques for solar cells, and the resulting solar cells, modules, and equipment, are described. In an example, a string of solar cells includes a plurality of back-contact solar cells, wherein each of the plurality of back-contact solar cells includes P-type and N-type doped diffusion regions. A plurality of conductive wires is disposed over a back surface of each of the plurality of solar cells, wherein each of the plurality of conductive wires is substantially parallel to the P-type and N-type doped diffusion regions of each of the plurality of solar cells. One or more of the plurality of conductive wires adjoins a pair of adjacent solar cells of the plurality of solar cells and has a relief feature between the pair of adjacent solar cells.
    Type: Application
    Filed: September 25, 2020
    Publication date: April 1, 2021
    Inventors: Richard Hamilton Sewell, Matthieu Minault Reich, Andrea R. Bowring, Arbaz Shakir, Ryan Reagan, Matthew Matsumoto