Patents by Inventor Matthew MILLARD

Matthew MILLARD has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961129
    Abstract: Systems and methods disclosed herein provide a geo-targeted online reservation system that ensures authenticity of customer devices requesting reservations by generating reservations only if threshold authentication conditions are satisfied. For example, a computing device registered with a server system receives inputs for requesting a reservation of a limited release product and for configuring the product. To authenticate the computing device, the server device transmits an electronic message to the computing device requesting the computing device to respond. A response to the message is one threshold authentication condition for generating the reservation. Upon determining that one or more threshold authentication conditions are satisfied, the server device generates a reservation for the product.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: April 16, 2024
    Assignee: adidas AG
    Inventors: Gordon Gibson Lanpher, Roger Brandon Beaty, Jonathan Matthew Shaw, Katharine Reinhold, Ryan Robert O. Malia, Megan Murphy Millard, Simon Atkins, Todd Ames
  • Publication number: 20240006645
    Abstract: Flow batteries can include a first half-cell containing a first aqueous electrolyte solution. a second half-cell containing a second aqueous electrolyte solution, and a separator disposed between the first half-cell and the second half-cell, The first aqueous electrolyte solution contains a first redox-active material, and the second aqueous electrolyte solution contains a second redox-active material. At least one of the first redox-active material and the second redox-active material is a nitroxide compound or a salt thereof. Particular nitroxide compounds can include a doubly bonded oxygen contained in a ring bearing the nitroxide group, a doubly bonded oxygen appended to a ring bearing the nitroxide group, sulfate or phosphate groups appended to a ring bearing the nitroxide group, various heterocyclic rings bearing the nitroxide group, or acyclic nitroxide compounds.
    Type: Application
    Filed: September 15, 2023
    Publication date: January 4, 2024
    Inventors: Zachariah M. Norman, Matthew Millard, Emily Grace Nelson, Scott Thomas Humbarger
  • Patent number: 11799117
    Abstract: Flow batteries can include a first half-cell containing a first aqueous electrolyte solution. a second half-cell containing a second aqueous electrolyte solution, and a separator disposed between the first half-cell and the second half-cell. The first aqueous electrolyte solution contains a first redox-active material, and the second aqueous electrolyte solution contains a second redox-active material. At least one of the first redox-active material and the second redox-active material is a nitroxide compound or a salt thereof. Particular nitroxide compounds can include a doubly bonded oxygen contained in a ring bearing the nitroxide group, a doubly bonded oxygen appended to a ring bearing the nitroxide group, sulfate or phosphate groups appended to a ring bearing the nitroxide group, various heterocyclic rings bearing the nitroxide group, or acyclic nitroxide compounds.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: October 24, 2023
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Zachariah M. Norman, Matthew Millard, Emily Grace Nelson, Scott Thomas Humbarger
  • Publication number: 20210305609
    Abstract: The present disclosure provides methods and devices for preparing electrolyte solutions containing unwanted impurities at the pg/L levels. The methods generally comprise electrochemically reducing the impurity to a precipitated, plated, or volatilized form, and removing that reduced form from electrolyte solution. This disclosure describes the methods and devices for effecting such methods, and the electrochemical solutions derived or derivable from such methods.
    Type: Application
    Filed: October 23, 2019
    Publication date: September 30, 2021
    Inventors: Zachariah M. NORMAN, Alexander B. PAPANDREW, Steven Y. REECE, Rachel Christine KLET, Matthew MILLARD
  • Publication number: 20210194032
    Abstract: Flow batteries can include a first half-cell containing a first aqueous electrolyte solution, a second half-cell containing a second aqueous electrolyte solution, and a separator disposed between the first half-cell and the second half-cell, The first aqueous electrolyte solution contains a first redox-active material, and the second aqueous electrolyte solution contains a second redox-active material. At least one of the first redox-active material and the second redox-active material is a nitroxide compound or a salt thereof. Particular nitroxide compounds can include a doubly bonded oxygen contained in a ring bearing the nitroxide group, a doubly bonded oxygen appended to a ring bearing the nitroxide group, sulfate or phosphate groups appended to a ring bearing the nitroxide group, various heterocyclic rings bearing the nitroxide group, or acyclic nitroxide compounds.
    Type: Application
    Filed: February 17, 2021
    Publication date: June 24, 2021
    Inventors: Zachariah M. Norman, Matthew Millard, Emily Grace Nelson, Scott Thomas Humbarger
  • Publication number: 20210135246
    Abstract: Electrolyte solutions for flow batteries and other electrochemical systems can contain an active material that is capable of transferring one or more electrons per molecule during an oxidation-reduction cycle. Doubly bridged aromatic groups or their coordination compounds can be particularly suitable active materials. Flow batteries can include a first half-cell containing a first electrolyte solution, and a second half-cell containing a second electrolyte solution, in which at least one of the first electrolyte solution and the second electrolyte solution contains an active material having at least two aromatic groups doubly bridged by a carbonyl moiety and a bridging moiety containing a bridging atom selected from carbon, nitrogen, oxygen, sulfur, selenium and tellurium. Such bridged compounds can directly function as the active material, or coordination compounds containing the bridged compounds as at least one ligand can serve as the active material.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Inventors: Matthew Millard, Zachariah M. Norman
  • Patent number: 10964966
    Abstract: Flow batteries can include a first half-cell containing a first aqueous electrolyte solution, a second half-cell containing a second aqueous electrolyte solution, and a separator disposed between the first half-cell and the second half-cell. The first aqueous electrolyte solution contains a first redox-active material, and the second aqueous electrolyte solution contains a second redox-active material. At least one of the first redox-active material and the second redox-active material is a nitroxide compound or a salt thereof. Particular nitroxide compounds can include a doubly bonded oxygen contained in a ring bearing the nitroxide group, a doubly bonded oxygen appended to a ring bearing the nitroxide group, sulfate or phosphate groups appended to a ring bearing the nitroxide group, various heterocyclic rings bearing the nitroxide group, or acyclic nitroxide compounds.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: March 30, 2021
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Zachariah M. Norman, Matthew Millard, Emily Grace Nelson, Scott Thomas Humbarger
  • Patent number: 10930937
    Abstract: Electrolyte solutions for flow batteries and other electrochemical systems can contain an active material that is capable of transferring one or more electrons per molecule during an oxidation-reduction cycle. Doubly bridged aromatic groups or their coordination compounds can be particularly suitable active materials. Flow batteries can include a first half-cell containing a first electrolyte solution, and a second half-cell containing a second electrolyte solution, in which at least one of the first electrolyte solution and the second electrolyte solution contains an active material having at least two aromatic groups doubly bridged by a carbonyl moiety and a bridging moiety containing a bridging atom selected from carbon, nitrogen, oxygen, sulfur, selenium and tellurium. Such bridged compounds can directly function as the active material, or coordination compounds containing the bridged compounds as at least one ligand can serve as the active material.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: February 23, 2021
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Matthew Millard, Zachariah M. Norman
  • Patent number: 10741864
    Abstract: Titanium catecholate complexes can be desirable active materials for flow batteries and other electrochemical energy storage systems, particularly when incorporated in aqueous electrolyte solutions. It can be desirable to avoid introducing certain organic solvents and/or extraneous salts into aqueous electrolyte solutions. Methods for synthesizing titanium catecholate complexes that can help avoid the unwanted introduction of organic solvents and/or extraneous salts into aqueous electrolyte solutions can include: providing an aqueous solution containing a catechol compound, reacting a titanium reagent with the catechol compound in the aqueous solution to form an intermediate titanium catecholate complex, isolating the intermediate titanium catecholate complex as a solid or slurry, and reacting a ligatable compound with the intermediate titanium catecholate complex in the presence of a base to produce a salt form titanium catecholate complex containing at least one additional ligand.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 11, 2020
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Steven Reece, Emily Grace Nelson, Matthew Millard
  • Publication number: 20200227769
    Abstract: Flow batteries and other electrochemical systems can contain an active material that is a coordination complex having at least one monosulfonated catecholate ligand or a salt thereof bound to a metal center. The monosulfonated catecholate ligand has a structure of More particularly, the coordination complex can be a titanium coordination complex with a formula of DgTi(L1)(L2)(L3), in which D is a counterion selected from H, NH4+, Li+, Na+, K+, or any combination thereof; g ranges between 3 and 6; and L1, L2 and L3 are ligands, where at least one of L1, L2 and L3 is a monosulfonated catecholate ligand. Methods for synthesizing such monosulfonated catecholate ligands can include providing a neat mixture of catechol and up to about 1.3 stoichiometric equivalents of sulfuric acid, and heating the neat mixture at a temperature of about 80° C. or above to form 3,4-dihydroxybenzenesulfonic acid or a salt thereof.
    Type: Application
    Filed: March 24, 2020
    Publication date: July 16, 2020
    Inventors: Scott Thomas Humbarger, Matthew Millard
  • Patent number: 10644342
    Abstract: Flow batteries and other electrochemical systems can contain an active material that is a coordination complex having at least one monosulfonated catecholate ligand or a salt thereof bound to a metal center. The monosulfonated catecholate ligand has a structure of More particularly, the coordination complex can be a titanium coordination complex with a formula of DgTi(L1)(L2)(L3), in which D is a counterion selected from H, NH4+, Li+, Na+, K+, or any combination thereof g ranges between 3 and 6; and L1, L2 and L3 are ligands, where at least one of L1, L2 and L3 is a monosulfonated catecholate ligand. Methods for synthesizing such monosulfonated catecholate ligands can include providing a neat mixture of catechol and up to about 1.3 stoichiometric equivalents of sulfuric acid, and heating the neat mixture at a temperature of about 80° C. or above to form 3,4-dihydroxybenzenesulfonic acid or a salt thereof.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: May 5, 2020
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Scott Thomas Humbarger, Matthew Millard
  • Publication number: 20200014054
    Abstract: Flow batteries can include a first half-cell containing a first aqueous electrolyte solution, a second half-cell containing a second aqueous electrolyte solution, and a separator disposed between the first half-cell and the second half-cell. The first aqueous electrolyte solution contains a first redox-active material, and the second aqueous electrolyte solution contains a second redox-active material. At least one of the first redox-active material and the second redox-active material is a nitroxide compound or a salt thereof. Particular nitroxide compounds can include a doubly bonded oxygen contained in a ring bearing the nitroxide group, a doubly bonded oxygen appended to a ring bearing the nitroxide group, sulfate or phosphate groups appended to a ring bearing the nitroxide group, various heterocyclic rings bearing the nitroxide group, or acyclic nitroxide compounds.
    Type: Application
    Filed: December 15, 2017
    Publication date: January 9, 2020
    Inventors: Zachariah M. NORMAN, Matthew MILLARD, Emily Grace NELSON, Scott Thomas HUMBARGER
  • Patent number: 10497958
    Abstract: Coordinatively saturated titanium (IV) coordination compounds containing catecholate ligands can be desirable active materials for flow batteries and other electrochemical energy storage systems. Such coordination compounds can be formed advantageously via an intermediate composition containing a coordinatively unsaturated titanium (IV) coordination compound. More specifically, such compositions can include a coordinatively unsaturated titanium (IV) coordination compound having a coordination number of 5 or less and containing two catecholate ligands, wherein the composition is substantially free of non-ligated catechol compound.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: December 3, 2019
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Matthew Millard, Adam Morris-Cohen, Roger Frisbee
  • Patent number: 10377687
    Abstract: Titanium complexes containing at least one catecholate ligand can be desirable active materials for flow batteries and other electrochemical energy storage systems. Such complexes can be formed through reacting a catechol compound with a titanium reagent in an organic solvent, removing a byproduct species, and then obtaining an aqueous phase containing a salt form of the titanium catechol complex, particularly an alkali metal salt form.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: August 13, 2019
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Matthew Millard, John Goeltz
  • Patent number: 10343964
    Abstract: Titanium complexes containing catecholate ligands can be desirable active materials for flow batteries and other electrochemical energy storage systems. Such complexes can be formed, potentially on very large scales, through reacting a catechol compound in an organic solvent with titanium tetrachloride, and then obtaining an aqueous phase containing an alkali metal salt form of the titanium catechol complex. More specifically, the methods can include: forming a catechol solution and heating, adding titanium tetrachloride to the catechol solution, reacting the titanium tetrachloride with a catechol compound to evolve HCl gas and to form an intermediate titanium catechol complex, and adding an alkaline aqueous solution to the intermediate titanium catechol complex to form an alkali metal salt form titanium catechol complex that is at least partially dissolved in an aqueous phase. The aqueous phase can be separated from an organic phase.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: July 9, 2019
    Assignee: Lockheed Martin Energy, LLC
    Inventor: Matthew Millard
  • Patent number: 10320023
    Abstract: Titanium catecholate complexes can be desirable active materials for flow batteries and other electrochemical energy storage systems, particularly when incorporated in aqueous electrolyte solutions. It can be desirable to avoid introducing even traces of certain organic solvents into aqueous electrolyte solutions. Neat methods for synthesizing titanium catecholate complexes can help avoid the unwanted introduction of trace organic solvents into aqueous electrolyte solutions and also provide further advantages. Methods for synthesizing titanium catecholate complexes can include: combining a catechol compound and a titanium reagent in an absence of solvent to produce a reaction mixture, and reacting the titanium reagent with the catechol compound in a neat state to form a titanium catecholate complex containing at least one catecholate ligand. The titanium catecholate complex can be further reacted with a base to produce a salt form titanium catecholate complex, which can be present in an aqueous phase.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: June 11, 2019
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Matthew Millard, Emily Grace Nelson
  • Patent number: 10316047
    Abstract: Coordination complexes can have a metal center with at least one unsubstituted catecholate ligand and at least one monosulfonated catecholate ligand or a salt thereof bound thereto. Some coordination complexes can have a formula of DgTi(L1)x(L2)y, in which D is a counterion selected from NH4+, Li+, Na+, K+, or any combination thereof; g ranges between 2 and 6; L1 is an unsubstituted catecholate ligand; L2 is a monosulfonated catecholate ligand; and x and y are non-zero numbers such that x+y=3. Methods for synthesizing such coordination complexes can include providing a neat mixture of catechol and a sub-stoichiometric amount of sulfuric acid, heating the neat mixture to form a reaction product containing catechol and a monosulfonated catechol or a salt thereof, and forming a coordination complex from the reaction product without separating the catechol and the monosulfonated catechol or the salt thereof from one another.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: June 11, 2019
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Scott Thomas Humbarger, Matthew Millard
  • Patent number: 10065977
    Abstract: Flow batteries incorporating an active material with one or more catecholate ligands can have a number of desirable operating features. Commercial syntheses of catechol produce significant quantities of hydroquinone as a byproduct, which presently has limited value in the battery industry and can represent a significant waste disposal issue at industrial production scales. Using a concerted, high-yield process, low-value hydroquinone can be transformed into high-value 1,2,4-trihydroxybenzene, which can be a desirable ligand for active materials of relevance in the flow battery industry.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: September 4, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Scott Thomas Humbarger, Matthew Millard
  • Publication number: 20180233762
    Abstract: Titanium catecholate complexes can be desirable active materials for flow batteries and other electrochemical energy storage systems, particularly when incorporated in aqueous electrolyte solutions. It can be desirable to avoid introducing even traces of certain organic solvents into aqueous electrolyte solutions. Neat methods for synthesizing titanium catecholate complexes can help avoid the unwanted introduction of trace organic solvents into aqueous electrolyte solutions and also provide further advantages. Methods for synthesizing titanium catecholate complexes can include: combining a catechol compound and a titanium reagent in an absence of solvent to produce a reaction mixture, and reacting the titanium reagent with the catechol compound in a neat state to form a titanium catecholate complex containing at least one catecholate ligand. The titanium catecholate complex can be further reacted with a base to produce a salt form titanium catecholate complex, which can be present in an aqueous phase.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 16, 2018
    Inventors: Matthew MILLARD, Emily Grace NELSON
  • Publication number: 20180191017
    Abstract: Titanium catecholate complexes can be desirable active materials for flow batteries and other electrochemical energy storage systems, particularly when incorporated in aqueous electrolyte solutions. It can be desirable to avoid introducing certain organic solvents and/or extraneous salts into aqueous electrolyte solutions. Methods for synthesizing titanium catecholate complexes that can help avoid the unwanted introduction of organic solvents and/or extraneous salts into aqueous electrolyte solutions can include: providing an aqueous solution containing a catechol compound, reacting a titanium reagent with the catechol compound in the aqueous solution to form an intermediate titanium catecholate complex, isolating the intermediate titanium catecholate complex as a solid or slurry, and reacting a ligatable compound with the intermediate titanium catecholate complex in the presence of a base to produce a salt form titanium catecholate complex containing at least one additional ligand.
    Type: Application
    Filed: March 29, 2017
    Publication date: July 5, 2018
    Inventors: Steven REECE, Emily Grace NELSON, Matthew MILLARD