Patents by Inventor Matthew N. Sysak

Matthew N. Sysak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9020002
    Abstract: Photonic integrated circuits on silicon are disclosed. By bonding a wafer of compound semiconductor material as an active region to silicon and removing the substrate, the lasers, amplifiers, modulators, and other devices can be processed using standard photolithographic techniques on the silicon substrate. A silicon laser intermixed integrated device in accordance with one or more embodiments of the present invention comprises a silicon-on-insulator substrate, comprising at least one waveguide in a top surface, and a compound semiconductor substrate comprising a gain layer, the compound semiconductor substrate being subjected to a quantum well intermixing process, wherein the upper surface of the compound semiconductor substrate is bonded to the top surface of the silicon-on-insulator substrate.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: April 28, 2015
    Assignee: The Regents of the University of California
    Inventors: Matthew N. Sysak, John E. Bowers, Alexander W. Fang, Hyundai Park
  • Publication number: 20140010253
    Abstract: Photonic integrated circuits on silicon are disclosed. By bonding a wafer of compound semiconductor material as an active region to silicon and removing the substrate, the lasers, amplifiers, modulators, and other devices can be processed using standard photolithographic techniques on the silicon substrate. A silicon laser intermixed integrated device in accordance with one or more embodiments of the present invention comprises a silicon-on-insulator substrate, comprising at least one waveguide in a top surface, and a compound semiconductor substrate comprising a gain layer, the compound semiconductor substrate being subjected to a quantum well intermixing process, wherein the upper surface of the compound semiconductor substrate is bonded to the top surface of the silicon-on-insulator substrate.
    Type: Application
    Filed: September 13, 2013
    Publication date: January 9, 2014
    Applicant: The Regents of the University of California
    Inventors: Matthew N. Sysak, John E. Bowers, Alexander W. Fang, Hyundai Park
  • Patent number: 8559478
    Abstract: Photonic integrated circuits on silicon are disclosed. By bonding a wafer of compound semiconductor material as an active region to silicon and removing the substrate, the lasers, amplifiers, modulators, and other devices can be processed using standard photolithographic techniques on the silicon substrate. A silicon laser intermixed integrated device in accordance with one or more embodiments of the present invention comprises a silicon-on-insulator substrate, comprising at least one waveguide in a top surface, and a compound semiconductor substrate comprising a gain layer, the compound semiconductor substrate being subjected to a quantum well intermixing process, wherein the upper surface of the compound semiconductor substrate is bonded to the top surface of the silicon-on-insulator substrate.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: October 15, 2013
    Assignee: The Regents of the University of California
    Inventors: Matthew N. Sysak, John E. Bowers, Alexander W. Fang, Hyundai Park
  • Publication number: 20120300796
    Abstract: Embodiments of the invention provide electrically pumped hybrid semiconductor lasers that are capable of being integrated into and with silicon-based CMOS (complementary metal-oxide semiconductor) devices. Hybrid laser active regions are comprised of multiple quantum wells or quantum dots. Devices according to embodiments of the invention are capable of being used to transfer data in and around personal computers, servers, and data centers as well as for longer-range data transmission.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Inventors: Matthew N. Sysak, Richard Jones, Eugenia D. Eugenieva
  • Patent number: 8084282
    Abstract: Wafer-level bonding of the hybrid laser portion of a silicon photonics platform is done by forming a weakened level in a semiconductive pillar that supports laser-active layers by ion implantation into the semiconductive pillar without penetrating the laser-active layers, and by separating the laser-active layers from the semiconductive pillar by cracking the weakened level by an epitaxial lift-off processes.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: December 27, 2011
    Assignee: Intel Corporation
    Inventors: John Heck, Richard Jones, Matthew N. Sysak
  • Publication number: 20110244613
    Abstract: Wafer-level bonding of the hybrid laser portion of a silicon photonics platform is done by forming a weakened level in a semiconductive pillar that supports laser-active layers by ion implantation into the semiconductive pillar without penetrating the laser-active layers, and by separating the laser-active layers from the semiconductive pillar by cracking the weakened level by an epitaxial lift-off processes.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 6, 2011
    Inventors: John Heck, Richard Jones, Matthew N. Sysak
  • Publication number: 20090245298
    Abstract: Photonic integrated circuits on silicon are disclosed. By bonding a wafer of compound semiconductor material as an active region to silicon and removing the substrate, the lasers, amplifiers, modulators, and other devices can be processed using standard photolithographic techniques on the silicon substrate. A silicon laser intermixed integrated device in accordance with one or more embodiments of the present invention comprises a silicon-on-insulator substrate, comprising at least one waveguide in a top surface, and a compound semiconductor substrate comprising a gain layer, the compound semiconductor substrate being subjected to a quantum well intermixing process, wherein the upper surface of the compound semiconductor substrate is bonded to the top surface of the silicon-on-insulator substrate.
    Type: Application
    Filed: January 16, 2009
    Publication date: October 1, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Matthew N. Sysak, John E. Bowers, Alexander W. Fang, Hyundai Park