Patents by Inventor Matthew O'Donnell

Matthew O'Donnell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11073500
    Abstract: A method for testing a structure using laser ultrasound includes steps of: (1) directing positioning light on a surface of the structure; (2) determining a spatial location and a spatial orientation of the surface from an evaluation of the positioning light reflected back from the surface; (3) directing pump light onto the surface to generate ultrasonic waves in the structure; (4) selectively locating a probe-light focal point of probe light on the surface, based on the spatial location determined for the surface; (5) selectively angularly orienting the probe light normal to the surface, based on the spatial orientation determined for the surface; and (6) directing the probe light onto the surface to detect a response to the ultrasonic waves.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: July 27, 2021
    Assignees: The Boeing Company, University of Washington
    Inventors: Jill P. Bingham, Gary E. Georgeson, William P. Motzer, Alan F. Stewart, Matthew O'Donnell, Ivan Pelivanov
  • Patent number: 10955335
    Abstract: A non-contact photoacoustic spectrophotometry system is configured to measure an absorption spectrum of a material. The system includes a modulated light source such as tunable pulsed laser that generates laser pulses to produce photoacoustic signals in the material. A non-contact detector monitors the surface of the container for the material. The detector includes a second light source, such as a continuous wave laser, focused on the surface of the container, and transmits reflected light to an interferometer, for example, a Sagnac interferometer. The interferometer produces an interference signal from the received light that is proportional to the acoustic pressure, which is transmitted to a computer to calculate an absorption coefficient. Using a plurality of wavelengths from the tunable pulsed laser, an absorption spectrum may be generated.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: March 23, 2021
    Assignee: University of Washington
    Inventors: Ivan Pelivanov, Matthew O'Donnell, Elena Petrova, Soon Joon Yoon
  • Publication number: 20210059535
    Abstract: A two-dimensional wideband ultrasound transducer array for three or four-dimensional (volume+time) non-invasively imaging/mapping of electrical current in, for example, the brain through the skull, or the heart. The probe also has unique capabilities for three-dimensional transcranial or transthoracic pulse echo ultrasound (tissue structure, motion, bone thickness) and doppler blood flow imaging. The handheld device interfaces with an ultrasound delivery system for applications to human brain or heart imaging, ultrasound neuromodulation, and therapy. The handheld ultrasound array enables three-dimensional steering of an ultrasound beam through the human skull or chest for ultrasound, doppler, and acoustoelectric imaging and related modalities to aid in the diagnosis and treatment of brain or heart disorders.
    Type: Application
    Filed: September 7, 2018
    Publication date: March 4, 2021
    Inventors: Russell S. Witte, Yexian Qin, Matthew O'Donnell, Zhen Xu, Charles Ingram
  • Patent number: 10888304
    Abstract: Methods and system for producing combined photoacoustic/ultrasonic image frames use a low-power narrow beam laser to direct sequential pulses along a path overlying an internal region of interest. Photoacoustic responses are received and used to generate sub-frames. Between each of the laser pulses a plurality of ultrasound pulse-echo beams are sequentially emitted towards the region of interest, and the reflections are received and used to generate ultrasound sub-frames. The photoacoustic sub-frames are combined to produce a photoacoustic frame, and the ultrasound sub-frames are combined to produce an ultrasound frame. The photoacoustic and ultrasound frames are combined to produce an image frame. The method and system are suitable for producing real-time, high-contrast video.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: January 12, 2021
    Assignee: University of Washington
    Inventors: Matthew O'Donnell, Thu-Mai Nguyen, Chen-Wei Wei, Jinjun Xia, Ivan Pelivanov, Soon Joon Yoon
  • Patent number: 10884815
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing an independent services platform. One of the methods includes maintaining a first software platform system configured to host user-provided computing tasks in a cloud computing environment of a distributed computing system. A services platform system configured to host services in the cloud computing environment of the distributed computing system is also maintained, wherein the second services platform system is configured to provision independent service resources in the underlying cloud computing infrastructure, and launch one or more service instances of the service using the provisioned independent service resources in the underlying cloud computing infrastructure. The second services platform system is configured to receive a bind request from a user and to provide binding information to one or more computing tasks hosted by the first software platform system upon receiving the bind request.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 5, 2021
    Assignee: Pivotal Software, Inc.
    Inventors: Rajasinghe Saman Gunaratne, Jatin Suryakiran Naik, Matthew McNeeney, Matthew O'Donnell, Edward James Gordon King
  • Patent number: 10829126
    Abstract: Methods and apparatus are disclosed to monitor and evaluate vehicle operator behavior. An example apparatus includes at least one processor to process image data to identify a traffic sign in relation to a vehicle; identify a driver event using a pattern of objects including the traffic sign and the vehicle in the image data; and evaluate compliance with a driver event rule for the driver event by at least: a) calculating a proximity of the traffic sign to the vehicle based on i) a distance between the vehicle and the traffic sign and ii) an operating state of the vehicle; b) comparing the proximity of the traffic sign and the operating state of the vehicle to determine an actual vehicle operating behavior; and c) generating a score associated with operation of the vehicle by comparing the actual vehicle operating behavior with the reference vehicle operating behavior.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: November 10, 2020
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Timothy Innes, Stephen Mitchell, Soe Naing, Matthew O'Donnell, Andrew Silva
  • Publication number: 20200315570
    Abstract: Methods and systems for measuring one or more properties of a soft material employ air transmitted ultrasound that is reflected from the soft material to generate a mechanical wave in the soft material. A method of measuring one or more properties of a soft material includes transmitting ultrasound through air to an interface boundary between the soft material and air. Force is applied to the soft material by reflecting the ultrasound from the soft material. A mechanical wave is generated in the soft material as a result of the force applied to the soft material. Propagation of the mechanical wave in the soft material is measured with an imaging system. One or more properties of the soft material is determined based on the measured propagation of the mechanical wave in the soft material.
    Type: Application
    Filed: May 26, 2017
    Publication date: October 8, 2020
    Inventors: Lukasz Ambrozinski, Matthew O'Donnell, Ivan Pelivanov, Soon Joon Yoon, David Li, Shaozhen Song, Ruikang K. Wang, Tueng T. Shen, Liang Gao
  • Publication number: 20200141908
    Abstract: A method for testing a structure using laser ultrasound includes steps of: (1) directing positioning light on a surface of the structure; (2) determining a spatial location and a spatial orientation of the surface from an evaluation of the positioning light reflected back from the surface; (3) directing pump light onto the surface to generate ultrasonic waves in the structure; (4) selectively locating a probe-light focal point of probe light on the surface, based on the spatial location determined for the surface; (5) selectively angularly orienting the probe light normal to the surface, based on the spatial orientation determined for the surface; and (6) directing the probe light onto the surface to detect a response to the ultrasonic waves.
    Type: Application
    Filed: November 7, 2018
    Publication date: May 7, 2020
    Applicants: The Boeing Company, University of Washington
    Inventors: Jill P. Bingham, Gary E. Georgeson, William P. Motzer, Alan F. Stewart, Matthew O'Donnell, Ivan Pelivanov
  • Publication number: 20200133737
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing an independent services platform. One of the methods includes maintaining a first software platform system configured to host user-provided computing tasks in a cloud computing environment of a distributed computing system. A services platform system configured to host services in the cloud computing environment of the distributed computing system is also maintained, wherein the second services platform system is configured to provision independent service resources in the underlying cloud computing infrastructure, and launch one or more service instances of the service using the provisioned independent service resources in the underlying cloud computing infrastructure. The second services platform system is configured to receive a bind request from a user and to provide binding information to one or more computing tasks hosted by the first software platform system upon receiving the bind request.
    Type: Application
    Filed: October 29, 2018
    Publication date: April 30, 2020
    Inventors: Rajasinghe Saman Gunaratne, Jatin Suryakiran Naik, Matthew McNeeney, Matthew O'Donnell, Edward James Gordon King
  • Patent number: 10599790
    Abstract: Systems and methods process a measured ultrasonic response waveform to determine a well casing thickness and an acoustic impedance of a sealing medium surrounding the well casing. An array of simulated response waveforms corresponding to a set of candidate acoustic impedances for the sealing medium surrounding the well casing and a set of candidate well casing thicknesses is generated. A simulated response waveform from the array of simulated response waveforms is identified that best matches the measured response waveform so as to determine the sealing medium acoustic impedance.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: March 24, 2020
    Assignees: UNIVERSITY OF WASHINGTON, BP CORPORATION NORTH AMERICA INC.
    Inventors: Ivan Pelivanov, Matthew O'Donnell, Abraham Vereide
  • Patent number: 10571390
    Abstract: A method of detecting local material changes in a composite structure is presented. A pulsed laser beam is directed towards the composite structure comprised of a number of composite materials. Wide-band ultrasonic signals are formed in the composite structure when radiation of the pulsed laser beam is absorbed by the composite structure. The wide-band ultrasonic signals are detected to form data. The data is processed to identify a local frequency value for the composite structure. The local frequency value is used to determine if local material changes are present in the number of composite materials.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: February 25, 2020
    Assignee: The Boeing Company
    Inventors: William P. Motzer, Gary Ernest Georgeson, Jill Paisley Bingham, Steven Kenneth Brady, Alan F. Stewart, James C. Kennedy, Ivan Pelivanov, Matthew O'Donnell, Jeffrey Reyner Kollgaard
  • Publication number: 20190307908
    Abstract: The present disclosure features, a kit, including a first compartment including a volatile fluorinated compound dissolved in a C1-6 alcohol; and a second compartment including water. When the contents of the first and second compartments are mixed, spontaneous nucleation of nanodroplets of the volatile fluorinated compound can form in the aqueous phase to provide a dispersion of nanodroplets in the aqueous phase. The nanodroplets can be used to generate nanobubbles or microbubbles in ultrasound imaging.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 10, 2019
    Inventors: Lilo D. Pozzo, David Li, Yi-Ting Lee, Matthew O'Donnell
  • Publication number: 20190302007
    Abstract: A non-contact photoacoustic spectrophotometry system is configured to measure an absorption spectrum of a material. The system includes a modulated light source such as tunable pulsed laser that generates laser pulses to produce photoacoustic signals in the material. A non-contact detector monitors the surface of the container for the material. The detector includes a second light source, such as a continuous wave laser, focused on the surface of the container, and transmits reflected light to an interferometer, for example, a Sagnac interferometer. The interferometer produces an interference signal from the received light that is proportional to the acoustic pressure, which is transmitted to a computer to calculate an absorption coefficient. Using a plurality of wavelengths from the tunable pulsed laser, an absorption spectrum may be generated.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 3, 2019
    Applicant: University of Washington
    Inventors: Ivan Pelivanov, Matthew O'Donnell, Elena Petrova, Soon Joon Yoon
  • Patent number: 10345267
    Abstract: A method of detecting material changes in a composite structure is presented. A pulsed laser beam is directed towards the composite structure comprised of a number of composite materials. Wide-band ultrasonic signals are formed in the composite structure when radiation of the pulsed laser beam is absorbed by the composite structure. The wide-band ultrasonic signals are detected to form data. The data comprises a number of ultrasonic A-scans. The data is processed to identify a plurality of frequency measurements for each of the number of ultrasonic A-scans. A frequency image is displayed using the plurality of frequency measurements. The material changes are represented in the frequency image.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: Matthew O'Donnell, Ivan Pelivanov, Steven Kenneth Brady, Gary Ernest Georgeson, Jeffrey Reyner Kollgaard, William P. Motzer, Clarence Lavere Gordon, III, Jill Paisley Bingham, Alan F. Stewart, James C. Kennedy
  • Patent number: 10323925
    Abstract: A compact and portable apparatus for measuring properties of objects utilizing a fiber optic Sagnac interferometer is enabled. The fiber optic Sagnac interferometer may be a double differential Sagnac interferometer. The interferometer core may be implemented with fiber optic components including polarization maintaining optical fiber, and by utilizing an auto-balanced avalanche photodetector. An optical switch may be incorporated to maintain relatively low average probe signal power while allowing optimal peak probe signal power. The compact and portable apparatus may be configured to measure ultrasonic vibrations, a displacement of an object surface in response to ultrasonic vibrations, and/or a vibration speed of the object surface. A wideband light source may be amplified and stabilized. A sensor head of the interferometer may incorporate a collimator adjustable to block a central portion of the projected probe beam thereby at least in part enabling in-plane and out-of-plane measurements.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: June 18, 2019
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Ivan Pelivanov, Matthew O'Donnell
  • Publication number: 20190152489
    Abstract: Methods and apparatus are disclosed to monitor and evaluate vehicle operator behavior. An example apparatus includes at least one processor to process image data to identify a traffic sign in relation to a vehicle; identify a driver event using a pattern of objects including the traffic sign and the vehicle in the image data; and evaluate compliance with a driver event rule for the driver event by at least: a) calculating a proximity of the traffic sign to the vehicle based on i) a distance between the vehicle and the traffic sign and ii) an operating state of the vehicle; b) comparing the proximity of the traffic sign and the operating state of the vehicle to determine an actual vehicle operating behavior; and c) generating a score associated with operation of the vehicle by comparing the actual vehicle operating behavior with the reference vehicle operating behavior.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Timothy Innes, Stephen Mitchell, Soe Naing, Matthew O'Donnell, Andrew Silva
  • Publication number: 20190034568
    Abstract: Systems and methods process a measured ultrasonic response waveform to determine a well casing thickness and an acoustic impedance of a sealing medium surrounding the well casing. An array of simulated response waveforms corresponding to a set of candidate acoustic impedances for the sealing medium surrounding the well casing and a set of candidate well casing thicknesses is generated. A simulated response waveform from the array of simulated response waveforms is identified that best matches the measured response waveform so as to determine the sealing medium acoustic impedance.
    Type: Application
    Filed: September 27, 2018
    Publication date: January 31, 2019
    Inventors: Ivan Pelivanov, Matthew O'Donnell, Abraham Vereide
  • Patent number: 10189479
    Abstract: Methods and apparatus are disclosed to monitor and evaluate vehicle operator behavior. An example method includes processing, using a particularly programmed processor, image data obtained with respect to a vehicle to identify an object in the image data. The example method includes measuring, using the mobile device, a geographic location of the vehicle. The example method includes determining, using the mobile device, an operating state of the vehicle. The example method includes analyzing the object in the image data, the geographic location, and the operating state of the vehicle to determine a behavior of the vehicle. The example method includes generating a score for a driver associated with the vehicle by comparing the behavior of the vehicle with a reference behavior, the reference behavior quantified by one or more driving metrics. The example method includes outputting the score.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: January 29, 2019
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Timothy Innes, Stephen Mitchell, Soe Naing, Matthew O'Donnell, Andrew Silva
  • Patent number: 10126273
    Abstract: A method of detecting inconsistencies in a structure is presented. A pulsed laser beam is directed towards the structure. A plurality of types of ultrasonic signals is formed in the structure when radiation of the pulsed laser beam is absorbed by the structure. The plurality of types of ultrasonic signals is detected to form data.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: November 13, 2018
    Assignee: The Boeing Company
    Inventors: Ivan Pelivanov, William P. Motzer, Matthew O'Donnell, Steven Kenneth Brady, Gary Ernest Georgeson, Jeffrey Reyner Kollgaard, Clarence Lavere Gordon, III, Jill Paisley Bingham, Alan F. Stewart, James C. Kennedy
  • Patent number: 10102315
    Abstract: Systems and methods process a measured ultrasonic response waveform to determine a well casing thickness and an acoustic impedance of a sealing medium surrounding the well casing. An array of simulated response waveforms corresponding to a set of candidate acoustic impedances for the sealing medium surrounding the well casing and a set of candidate well casing thicknesses is generated. A simulated response waveform from the array of simulated response waveforms is identified that best matches the measured response waveform so as to determine the sealing medium acoustic impedance.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: October 16, 2018
    Assignees: UNIVERSITY OF WASHINGTON, BP CORPORATION NORTH AMERICA INC.
    Inventors: Ivan Pelivanov, Matthew O'Donnell, Abraham Vereide