Patents by Inventor Matthew P. Woods

Matthew P. Woods has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12071861
    Abstract: A multi-piece radial turbine rotor includes a hub, turbine blades, and a flowpath ring that couples the turbine blades to the hub. Joints between the components of the rotor are adapted for inspection during manufacture to identify potential defects in the joints.
    Type: Grant
    Filed: September 22, 2023
    Date of Patent: August 27, 2024
    Assignee: Rolls-Royce American Technologies Inc.
    Inventors: Michael D. Wood, Matthew T. Kush, Timothy P. Fuesting, Douglas D. Dierksmeier
  • Patent number: 11318448
    Abstract: A catalyst comprising a carrier and a metals component impregnated in the carrier, the carrier comprising alumina; and the metals component comprising a first metals fraction and a second metals fraction, the first metals fraction comprising at least one metal selected from chromium, molybdenum, or tungsten, and the second metals fraction comprising at least two metals selected from cobalt, rhodium, iridium, nickel, palladium, or platinum, wherein the catalyst has a first pore volume of 0.28 to 0.45 mL/g for pores having a pore diameter of 12 nm to less than 16 nm, and a second pore volume of 0.15 to 0.28 mL/g for pores of 2.0 nm to less than 12.0 nm.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: May 3, 2022
    Assignee: ADVANCED REFINING TECHNOLOGIES LLC
    Inventors: Yosuke Koakutsu, Koichi Matsushita, Matthew P Woods
  • Publication number: 20200360903
    Abstract: A catalyst comprising a carrier and a metals component impregnated in the carrier, the carrier comprising alumina; and the metals component comprising a first metals fraction and a second metals fraction, the first metals fraction comprising at least one metal selected from chromium, molybdenum, or tungsten, and the second metals fraction comprising at least two metals selected from cobalt, rhodium, iridium, nickel, palladium, or platinum, wherein the catalyst has a first pore volume of 0.28 to 0.45 mL/g for pores having a pore diameter of 12 nm to less than 16 nm, and a second pore volume of 0.15 to 0.28 mL/g for pores of 2.0 nm to less than 12.0 nm.
    Type: Application
    Filed: January 25, 2019
    Publication date: November 19, 2020
    Inventors: Yosuke KOAKUTSU, Koichi MATSUSHITA, Matthew P WOODS
  • Patent number: 10584288
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise alumina and 5 wt % or less titania. Catalyst prepared from the supports have at least 30 to 80 volume percent of its pore volume in pores having a diameter of between 200 and 500 angstroms. Catalysts in accordance with the invention exhibit improved catalytic activity and stability to remove metals from heavy feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: March 10, 2020
    Assignee: Advanced Refining Technologies LLC
    Inventors: Viorel D. Duma, Matthew P. Woods
  • Patent number: 10569254
    Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks is prepared, the catalyst comprising a metal from Group 6 of the Periodic Table, a metal from Groups 8, 9 or 10 and optionally phosphorous, wherein the metals, and phosphorous when present, are carried on a foraminous carrier or support, the carrier or support, preferably comprises porous alumina having a total pore volume (TPV) of about 0.6 cc/g to about 1.1 cc/g and comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (?); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 (?) to less than about 1000 ?; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 ?; and (d) a pore mode equal to or greater than about 90 ? and less than about 160 ?. Preferably the support exhibits a d50 greater than about 100 ? and less than about 150 ?.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: February 25, 2020
    Assignee: Advanced Refining Technologies LLC
    Inventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
  • Patent number: 10518251
    Abstract: Improved supported hydroprocessing catalysts, and their method of preparation useful for the hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of a petroleum feedstock, including a residuum hydrocarbon feedstock are disclosed. The Catalysts contain at least one Groups VIB metal component, at least one Group VIII metal component, and a phosphorus component, supported on a foraminous support such as alumina. The supported catalysts are characterized by a specific combination of properties, namely, the Group VIII metal to Phosphorous molar ratio, the Group VIII metal to Group VIB metal molar ratio, the phosphorous component to Group VIB component molar ratio and the median pore diameter. The resulting catalysts exhibit enhanced HDN without sacrificing to any significant degree the HDS activity.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: December 31, 2019
    Assignee: Advanced Refining Technologies LLC
    Inventors: Koichi Matsushita, Yasuhito Goto, Matthew P. Woods
  • Publication number: 20180147567
    Abstract: Improved supported hydroprocessing catalysts, and their method of preparation useful for the hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of a petroleum feedstock, including a residuum hydrocarbon feedstock are disclosed. The Catalysts contain at least one Groups VIB metal component, at least one Group VIII metal component, and a phosphorus component, supported on a foraminous support such as alumina. The supported catalysts are characterized by a specific combination of properties, namely, the Group VIII metal to Phosphorous molar ratio, the Group VIII metal to Group VIB metal molar ratio, the phosphorous component to Group VIB component molar ratio and the median pore diameter. The resulting catalysts exhibit enhanced HDN without sacrificing to any significant degree the HDS activity.
    Type: Application
    Filed: May 13, 2016
    Publication date: May 31, 2018
    Applicant: Advanced Refining Technologies LLC
    Inventors: Koichi Matsushita, Yasuhito Goto, Matthew P. Woods
  • Patent number: 9908105
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: March 6, 2018
    Assignee: Advanced Refining Technologies LLC
    Inventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
  • Publication number: 20170165639
    Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks is prepared, the catalyst comprising a metal from Group 6 of the Periodic Table, a metal from Groups 8, 9 or 10 and optionally phosphorous, wherein the metals, and phosphorous when present, are carried on a foraminous carrier or support, the carrier or support, preferably comprises porous alumina having a total pore volume (TPV) of about 0.6 cc/g to about 1.1 cc/g and comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (?); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 (?) to less than about 1000 ?; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 ?; and (d) a pore mode equal to or greater than about 90 ? and less than about 160 ?. Preferably the support exhibits a d50 greater than about 100 ? and less than about 150 ?.
    Type: Application
    Filed: March 1, 2017
    Publication date: June 15, 2017
    Inventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
  • Patent number: 9605216
    Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks is prepared, the catalyst comprising a metal from Group 6 of the Periodic Table, a metal from Groups 8, 9 or 10 and optionally phosphorous, wherein the metals, and phosphorous when present, are carried on a foraminous carrier or support, the carrier or support, preferably comprises porous alumina having a total pore volume (TPV) of about 0.6 cc/g to about 1.1 cc/g and comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (?); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 (?) to less than about 1000 ?; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 ?; and (d) a pore mode equal to or greater than about 90 ? and less than about 160 ?. Preferably the support exhibits a d50 greater than about 100 ? and less than about 150 ?.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: March 28, 2017
    Assignee: Advanced Refining Technologies LLC
    Inventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
  • Publication number: 20160074840
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Inventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
  • Publication number: 20160017240
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise alumina and 5 wt % or less titania. Catalyst prepared from the supports have at least 30 to 80 volume percent of its pore volume in pores having a diameter of between 200 and 500 angstroms. Catalysts in accordance with the invention exhibit improved catalytic activity and stability to remove metals from heavy feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion.
    Type: Application
    Filed: February 14, 2013
    Publication date: January 21, 2016
    Applicant: ADVANCED REFINING TECHNOLOGIES LLC
    Inventors: Viorel D. Duma, Matthew P. Woods
  • Patent number: 9216407
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 22, 2015
    Assignee: Advanced Refining Technologies LLC
    Inventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
  • Publication number: 20150166905
    Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks is prepared, the catalyst comprising a metal from Group 6 of the Periodic Table, a metal from Groups 8, 9 or 10 and optionally phosphorous, wherein the metals, and phosphorous when present, are carried on a foraminous carrier or support, the carrier or support, preferably comprises porous alumina having a total pore volume (TPV) of about 0.6 cc/g to about 1.1 cc/g and comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (?); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 (?) to less than about 1000 ?; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 ?; and (d) a pore mode equal to or greater than about 90 ? and less than about 160 ?. Preferably the support exhibits a d50 greater than about 100 ? and less than about 150 ?.
    Type: Application
    Filed: March 2, 2015
    Publication date: June 18, 2015
    Inventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
  • Patent number: 8969242
    Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks, the catalyst comprising a metal from Group 6, a metal from Group 8, and optionally phosphorous, wherein the carrier or support, comprises porous alumina comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (A); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 to less than about 1000 A; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 A.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 3, 2015
    Assignee: Advanced Refining Technologies LLC
    Inventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
  • Publication number: 20140262956
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: ADVANCED REFINING TECHNOLOGIES LLC
    Inventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
  • Publication number: 20140174983
    Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks, the catalyst comprising a metal from Group 6, a metal from Group 8, and optionally phosphorous, wherein the carrier or support, comprises porous alumina comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (A); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 to less than about 1000 A; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 A.
    Type: Application
    Filed: August 3, 2012
    Publication date: June 26, 2014
    Applicant: ADVANCED REFINING TECHNOLOGIES LLC
    Inventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci