Patents by Inventor Matthew Pollard

Matthew Pollard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12018084
    Abstract: Disclosed herein are human antibody molecules that immunospecifically bind to human CXCR2. The disclosed human antibody molecules are potent and selective antagonists of CXCR2 functions and prevent the recruitment of neutrophils into tissues without strongly depleting circulating neutrophil numbers. Pharmaceutical compositions, nucleic acid molecules, vectors, cells, and uses of the disclosed antibodies are also provided.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: June 25, 2024
    Assignee: Cephalon LLC
    Inventors: Doris Shim Siew Chen, Lynn Dorothy Poulton, Adam Clarke, David Jose Simon Laine, Matthew Pollard, Bridget Ann Cooksey, Anthony Doyle, Jason William Gill
  • Publication number: 20240150457
    Abstract: The present disclosure provides antibodies and antigen-binding fragments thereof that specifically bind to human PAR-2 and compositions comprising such antibodies or antigen-binding fragments thereof. In a particular aspect, the antibodies or antigen-binding fragments thereof that specifically bind to human PAR-2 block the interaction between a PAR-2 activating ligand and an extracellular domain of PAR-2, and/or blocks PAR-2 activation by a PAR-2 activating ligand, In further aspects, the antibodies or antigen-binding fragments can be used to treat diseases or conditions associated with increased expression of PAR-2 and/or diseases or conditions that can be alleviated by antagonizing activation of PAR-2 by a PAR-2 activating ligand (e.g., airway diseases, skin diseases, cancer, orofacial granulomatosis, inflammatory conditions, and pain associated with various diseases or conditions).
    Type: Application
    Filed: June 21, 2023
    Publication date: May 9, 2024
    Inventors: Anna Mikaela BRACKEN, Adam CLARKE, Bridget A. COOKSEY, Anthony Gerard DOYLE, Mark Terence LIDDAMENT, Matthew POLLARD, Lynn POULTON, Anna Maria Matilda QUIGLEY, Julia ROZENFELD, Marta SZABAT
  • Publication number: 20240141053
    Abstract: The disclosure provides TNF-like ligand 1a (TL1a)-binding proteins comprising an antigen binding domain of an antibody which binds specifically to TL1a and inhibits interaction of TL1a and Death Receptor 3 (DR3) and which does not inhibit the interaction of TL1a and Decoy Receptor 3 (DcR3). The disclosure also provides uses of the TL1a-binding proteins.
    Type: Application
    Filed: April 20, 2023
    Publication date: May 2, 2024
    Inventors: Lynn Dorothy POULTON, Adam CLARKE, Andrew James POW, Debra TAMVAKIS, George KOPSIDAS, Anthony Gerard DOYLE, Philip Anthony JENNINGS, Matthew POLLARD
  • Patent number: 11725052
    Abstract: The present disclosure provides antibodies and antigen-binding fragments thereof that specifically bind to human PAR-2 and compositions comprising such antibodies or antigen-binding fragments thereof. In a particular aspect, the antibodies or antigen-binding fragments thereof that specifically bind to human PAR-2 block the interaction between a PAR-2 activating ligand and an extracellular domain of PAR-2, and/or blocks PAR-2 activation by a PAR-2 activating ligand, In further aspects, the antibodies or antigen-binding fragments can be used to treat diseases or conditions associated with increased expression of PAR-2 and/or diseases or conditions that can be alleviated by antagonizing activation of PAR-2 by a PAR-2 activating ligand (e.g., airway diseases, skin diseases, cancer, orofacial granulomatosis, inflammatory conditions, and pain associated with various diseases or conditions).
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: August 15, 2023
    Assignee: Cephalon LLC
    Inventors: Anna Mikaela Bracken, Adam Clarke, Bridget A. Cooksey, Anthony Gerard Doyle, Mark Terence Liddament, Matthew Pollard, Lynn Poulton, Anna Maria Matilda Quigley, Julia Rozenfeld, Marta Szabat
  • Publication number: 20220348671
    Abstract: Disclosed herein are human antibody molecules that immunospecifically bind to human CXCR2. The disclosed human antibody molecules are potent and selective antagonists of CXCR2 functions and prevent the recruitment of neutrophils into tissues without strongly depleting circulating neutrophil numbers. Pharmaceutical compositions, nucleic acid molecules, vectors, cells, and uses of the disclosed antibodies are also provided.
    Type: Application
    Filed: April 12, 2022
    Publication date: November 3, 2022
    Inventors: Doris Shim Siew Chen, Lynn Dorothy Poulton, Adam Clarke, David Jose Simon Laine, Matthew Pollard, Bridget Ann Cooksey, Anthony Doyle, Jason William Gill
  • Patent number: 11423795
    Abstract: A cognitive training and evaluation system capable of simulating a scenario to be executed by a trainee. The system includes a simulation server and one or more interface devices. The simulation server can include a data storage engine, a scenario generation engine, a scenario execution engine, and a feedback and analysis engine. The data storage engine can store a library of scenario scripts, which can be used by the scenario generation engine with one or more scenario generation parameters to produce a scenario for execution by the scenario execution engine. The scenario execution engine can be configured to execute the scenario by iteratively communicating a status to the interface device, and receiving a response from the interface device. Each interface device can render a simulation based on the one and communicate the response to the simulation server. Trainee and opponent statistics can be used during scenario generation and execution.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: August 23, 2022
    Assignee: CogReps Inc.
    Inventor: Matthew Pollard Schaefgen
  • Publication number: 20220220184
    Abstract: The present invention provides a fusion polypeptide comprising a first domain and a second domain, wherein the first domain comprises a polypeptide ligand which binds to a cell surface-associated antigen and the second domain comprises aglycosylated interferon ? 2b (IFN?2b) having a sequence of SEQ ID NO: 1 or SEQ ID NO: 2. The aglycosylated IFN?2b further comprises one or more amino acid substitutions or deletions which attenuate the activity of the aglycosylated IFN?2b.
    Type: Application
    Filed: March 31, 2022
    Publication date: July 14, 2022
    Inventors: Collette Behrens, Anthony Doyle, Adam Clarke, Matthew Pollard, Teresa Domagala
  • Publication number: 20220185902
    Abstract: Recombinantly expressed variant antibodies that have enhanced affinity for TL1A and enhanced potency relative to the parent antibody from which they were derived are provided. The antibodies inhibit the interaction between TL1A and the death receptor 3 (DR3). The antibodies, or a composition thereof, may be used to treat one or more of asthma, COPD, pulmonary fibrosis, cystic fibrosis, inflammatory bowel disease, a gastrointestinal disease associated with cystic fibrosis, Crohn's disease, colitis, ulcerative colitis, irritable bowel syndrome, eosinophilic esophagitis, atopic dermatitis, eczema, scleroderma, arthritis, or rheumatoid arthritis.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 16, 2022
    Inventors: Lynn Dorothy POULTON, Matthew Pollard, Anthony G. Doyle, Bridget A. Cooksey, Vanya Pande, Adam W. Clarke
  • Patent number: 11332534
    Abstract: Disclosed herein are human antibody molecules that immunospecifically bind to human CXCR2. The disclosed human antibody molecules are potent and selective antagonists of CXCR2 functions and prevent the recruitment of neutrophils into tissues without strongly depleting circulating neutrophil numbers. Pharmaceutical compositions, nucleic acid molecules, vectors, cells, and uses of the disclosed antibodies are also provided.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: May 17, 2022
    Assignee: Cephalon, Inc.
    Inventors: Doris Shim Siew Chen, Lynn Dorothy Poulton, Adam Clarke, David Jose Simon Laine, Matthew Pollard, Bridget Ann Cooksey, Anthony Doyle, Jason William Gill
  • Patent number: 11319356
    Abstract: The present invention provides a fusion polypeptide comprising a first domain and a second domain, wherein the first domain comprises a polypeptide ligand which binds to a cell surface-associated antigen and the second domain comprises aglycosylated interferon ? 2b (IFN?2b) having a sequence of SEQ ID NO: 1 or SEQ ID NO: 2. The aglycosylated IFN?2b further comprises one or more amino acid substitutions or deletions which attenuate the activity of the aglycosylated IFN?2b.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: May 3, 2022
    Assignee: Teva Pharmaceuticals Australia Pty Ltd
    Inventors: Collette Behrens, Anthony Doyle, Adam Clarke, Matthew Pollard, Teresa Domagala
  • Publication number: 20220127352
    Abstract: Recombinant antibodies that specifically bind to IL-15 as well as a complex of IL-15 and the IL-15 Receptor-alpha are provided. The antibodies inhibit immune cell proliferation, and are capable of use in the treatment of any autoimmune or inflammatory disease or condition where IL-15 is dysregulated, including Celiac disease.
    Type: Application
    Filed: January 5, 2022
    Publication date: April 28, 2022
    Inventors: David Jose Simon LAINE, Matthew POLLARD, Anthony Gerard DOYLE, Lynn Dorothy POULTON, Adam William CLARKE
  • Patent number: 11267883
    Abstract: Recombinant antibodies that specifically bind to IL-15 as well as a complex of IL-15 and the IL-15 Receptor-alpha are provided. The antibodies inhibit immune cell proliferation, and are capable of use in the treatment of any autoimmune or inflammatory disease or condition where IL-15 is dysregulated, including Celiac disease.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: March 8, 2022
    Assignee: Cephalon, Inc.
    Inventors: David Jose Simon Laine, Matthew Pollard, Anthony Gerard Doyle, Lynn Dorothy Poulton, Adam William Clarke
  • Publication number: 20220056125
    Abstract: The present disclosure provides antibodies and antigen-binding fragments thereof that specifically bind to human PAR-2 and compositions comprising such antibodies or antigen-binding fragments thereof. In a particular aspect, the antibodies or antigen-binding fragments thereof that specifically bind to human PAR-2 block the interaction between a PAR-2 activating ligand and an extracellular domain of PAR-2, and/or blocks PAR-2 activation by a PAR-2 activating ligand, In further aspects, the antibodies or antigen-binding fragments can be used to treat diseases or conditions associated with increased expression of PAR-2 and/or diseases or conditions that can be alleviated by antagonizing activation of PAR-2 by a PAR-2 activating ligand (e.g., airway diseases, skin diseases, cancer, orofacial granulomatosis, inflammatory conditions, and pain associated with various diseases or conditions).
    Type: Application
    Filed: August 18, 2021
    Publication date: February 24, 2022
    Inventors: Anna Mikaela BRACKEN, Adam CLARKE, Bridget A. COOKSEY, Anthony Gerard DOYLE, Mark Terence LIDDAMENT, Matthew POLLARD, Lynn POULTON, Anna Maria Matilda QUIGLEY, Julia ROZENFELD, Marta SZABAT
  • Patent number: 11220549
    Abstract: Recombinantly expressed variant antibodies that have enhanced affinity for TL1A and enhanced potency relative to the parent antibody from which they were derived are provided. The antibodies inhibit the interaction between TL1A and the death receptor 3 (DR3). The antibodies, or a composition thereof, may be used to treat one or more of asthma, COPD, pulmonary fibrosis, cystic fibrosis, inflammatory bowel disease, a gastrointestinal disease associated with cystic fibrosis, Crohn's disease, colitis, ulcerative colitis, irritable bowel syndrome, eosinophilic esophagitis, atopic dermatitis, eczema, scleroderma, arthritis, or rheumatoid arthritis.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: January 11, 2022
    Assignee: Cephalon, Inc.
    Inventors: Lynn Dorothy Poulton, Matthew Pollard, Anthony G. Doyle, Bridget A. Cooksey, Vanya Pande, Adam W. Clarke
  • Publication number: 20210347904
    Abstract: The disclosure provides TNF-like ligand 1a (TL1a)-binding proteins comprising an antigen binding domain of an antibody which binds specifically to TL1a and inhibits interaction of TL1a and Death Receptor 3 (DR3) and which does not inhibit the interaction of TL1a and Decoy Receptor 3 (DcR3). The disclosure also provides uses of the TL1a-binding proteins.
    Type: Application
    Filed: September 24, 2020
    Publication date: November 11, 2021
    Inventors: Lynn Dorothy POULTON, Adam CLARKE, Andrew James POW, Debra TAMVAKIS, George KOPSIDAS, Anthony Gerard DOYLE, Philip Anthony JENNINGS, Matthew POLLARD
  • Patent number: 11117975
    Abstract: Antibodies that specifically bind to CD38, as well as constructs comprising such antibodies fused to attenuated interferon alpha-2B proteins are provided. Anti-CD38-attenuated interferon alpha-2b fusion constructs may be used to inhibit proliferation in cancerous cells that express both CD38 and the receptor for IFN-alpha2b, as well as to induce apoptosis in such cells. Inhibition of proliferation and induction of apoptosis in cancerous cells may serve as the basis for the treatment of the underlying cancer.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: September 14, 2021
    Assignee: Teva Pharmaceuticals Australia Pty Ltd
    Inventors: Adam Clarke, Matthew Pollard, Anthony Gerard Doyle, Collette Behrens, Tetsuo Yamagishi, David S. Wilson, Jr., Sarah L. Pogue, Tetsuya Taura
  • Patent number: 10981986
    Abstract: The present invention provides a polypeptide construct comprising a peptide or polypeptide signaling ligand linked to an antibody or antigen binding portion thereof which binds to a cell surface-associated antigen, wherein the ligand comprises at least one amino acid substitution or deletion which reduces its potency on cells lacking expression of said antigen.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: April 20, 2021
    Assignee: Teva Pharmaceuticals Australia Pty Ltd
    Inventors: David S. Wilson, Jr., Sarah L. Pogue, Glen E. Mikesell, Tetsuya Taura, Wouter Korver, Anthony G. Doyle, Adam Clarke, Matthew Pollard, Stephen Tran, Jack Tzu Chiao Lin
  • Patent number: 10906973
    Abstract: The present invention relates, in general, to polypeptides capable of transmigrating the blood-brain barrier, and uses thereof. More specifically, the present invention relates to polypeptides derived by site-directed mutagenesis of an existing antibody fragment and uses thereof, and methods of making such molecules. The polypeptides of the present invention show enhanced blood-brain barrier crossing and brain exposure levels in vitro and in vivo.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: February 2, 2021
    Assignees: National Research Council of Canada, Cephalon, Inc.
    Inventors: Danica Stanimirovic, Traian Sulea, Kristin Kemmerich, David Wilson, Jennifer Stratton, Matthew Pollard, Adam Clarke
  • Patent number: 10822422
    Abstract: The disclosure provides TNF-like ligand 1a (TL1a)-binding proteins comprising an antigen binding domain of an antibody which binds specifically to TL1a and inhibits interaction of TL1a and Death Receptor 3 (DR3) and which does not inhibit the interaction of TL1a and Decoy Receptor 3 (DcR3). The disclosure also provides uses of the TL1a-binding proteins.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: November 3, 2020
    Assignee: Teva Pharmaceuticals Australia Pty Ltd
    Inventors: Lynn Dorothy Poulton, Adam Clarke, Andrew James Pow, Debra Tamvakis, George Kopsidas, Anthony Gerard Doyle, Philip Anthony Jennings, Matthew Pollard
  • Publication number: 20200270339
    Abstract: Recombinant antibodies that specifically bind to IL-15 as well as a complex of IL-15 and the IL-15 Receptor-alpha are provided. The antibodies inhibit immune cell proliferation, and are capable of use in the treatment of any autoimmune or inflammatory disease or condition where IL-15 is dysregulated, including Celiac disease.
    Type: Application
    Filed: December 21, 2017
    Publication date: August 27, 2020
    Inventors: David Jose Simon LAINE, Matthew POLLARD, Anthony Gerard DOYLE, Lynn Dorothy POULTON, Adam William CLARKE