Patents by Inventor Matthew POTTLE

Matthew POTTLE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103181
    Abstract: Disclosed is a method of providing DOP forecasts for LEO navigation for routing of vehicles, aircraft, alerting humans in vehicles, or wireless devices, and bandwidth forecasts for LEO communications. The method includes accessing a 3D map of an area including structure solids and generating cuboids in spaces not contained in the structure solids; and iteratively over time increments, calculating LEO satellites visible from the cuboids using the map and, using at least the calculated visibility, determining forecasts for the cuboids at the time increments. Also included is compressing the determined forecast spatially and temporally; and distributing the compressed DOP forecast via a CDN, responsive to queries from requestors. Systems of the requestors can take into account the forecast for routing vehicles or alerting humans in vehicles to a predicted navigation impairment. Risk analysis is applied to improving computation and distribution of forecasts. Forecasts are applied to satellite deployment.
    Type: Application
    Filed: September 15, 2023
    Publication date: March 28, 2024
    Applicant: Spirent Communications Plc
    Inventors: Jeremy C. BENNINGTON, Paul HANSEN, Esther ANYAEGBU, Samuel NARDONI, Matthew POTTLE
  • Publication number: 20240094402
    Abstract: Disclosed is a method of providing DOP forecasts for LEO navigation for routing of vehicles, aircraft, alerting humans in vehicles, or wireless devices, and bandwidth forecasts for LEO communications. The method includes accessing a 3D map of an area including structure solids and generating cuboids in spaces not contained in the structure solids; and iteratively over time increments, calculating LEO satellites visible from the cuboids using the map and, using at least the calculated visibility, determining forecasts for the cuboids at the time increments. Also included is compressing the determined forecast spatially and temporally; and distributing the compressed DOP forecast via a CDN, responsive to queries from requestors. Systems of the requestors can take into account the forecast for routing vehicles or alerting humans in vehicles to a predicted navigation impairment. Risk analysis is applied to improving computation and distribution of forecasts. Forecasts are applied to satellite deployment.
    Type: Application
    Filed: September 15, 2023
    Publication date: March 21, 2024
    Applicant: Spirent Communications Plc
    Inventors: Jeremy C. BENNINGTON, Paul HANSEN, Esther ANYAEGBU, Samuel NARDONI, Matthew POTTLE
  • Publication number: 20230128817
    Abstract: Disclosed is reducing starting time for a GNSS receiver that has an imprecise initial starting location by requesting starting assistance from a CDN that caches predictive data including first data indicated predicted LOS visibility from the receiver to individual satellites, wherein the request includes the imprecise initial staring location, receiving, from the CDN, data that includes a first block of the predictive data for the imprecise initial staring location and further adjoining second blocks of predictive data for areas surrounding the imprecise staring location, determining, by the GNSS receiver, commonly available satellites that have visibility from locations in both the first block and the second block, and calculating a first starting position using weighted values for the satellites, the commonly available satellites having higher weighted value than satellites without visibility in both locations, whereby position uncertainty of the first starting position is reduced from the imprecise initial
    Type: Application
    Filed: September 19, 2022
    Publication date: April 27, 2023
    Applicant: Spirent Communications PLC
    Inventors: Jeremy Charles BENNINGTON, Richard WEST, Paul HANSEN, Esther ANYAEGBU, Matthew POTTLE
  • Publication number: 20230118232
    Abstract: Disclosed is determining GNSS satellite position visibility by possessing an orbital segment representing the transit of a satellite in orbit over time, a coarse ray angle interval, a fine ray angle interval, and a digital surface model. Disclosed is propagating coarse ray at coarse ray angle intervals increments in a first pass between an observable point and orbital segment at a respective coarse ray angle to determine whether the coarse ray is obstructed by features of the DSM, and recording a status of the coarse ray based on whether the coarse ray was obstructed. If pairs of successive coarse rays have different status, designating the coarse ray with NLOS visibility, then performing a second pass by propagating, per each designated coarse ray, fine rays at fine ray angle intervals, and saving an indication of time at which LOS visibility to the satellite is obstructed.
    Type: Application
    Filed: September 19, 2022
    Publication date: April 20, 2023
    Applicant: Spirent Communications PLC
    Inventors: Jeremy Charles BENNINGTON, Richard WEST, Paul HANSEN, Esther ANYAEGBU, Matthew POTTLE
  • Publication number: 20230118946
    Abstract: Disclosed is a method of detecting and rejecting a spoofing or jamming signal source by receiving at a first device a forecast of a visibility for each Global Navigation Satellite System (GNSS) satellite signal source in the forecast at a GNSS receiver coupled to the first device, calculating from at least an elevation and the received visibility of the satellite signal sources in the forecast a predicted Signal to Noise Ratio (SNR), comparing SNR acquired by the GNSS receiver of one or more of the satellite signal sources to the predicted SNR, detecting a spoofing signal source based on acquiring a higher SNR than predicted or a jamming signal source based on acquiring a lower SNR than predicted, and rejecting the spoofing or jamming signal source based on differences between the acquired and predicted SNR.
    Type: Application
    Filed: September 19, 2022
    Publication date: April 20, 2023
    Applicant: Spirent Communications PLC
    Inventors: Jeremy Charles BENNINGTON, Richard WEST, Paul HANSEN, Esther ANYAEGBU, Matthew POTTLE
  • Publication number: 20230121760
    Abstract: Disclosed is representing distant objects for analysis of satellite line-of-sight visibility from a grid of points by constructing a first 3D model of foreground objects that obscure line-of-sight visibility of satellites from a grid of points, wherein the first 3D model is at a first resolution, where spacing of grid points denotes obstruction edges, constructing a second 3D model of background objects that are more than a threshold distance away and that object obscure line-of-sight visibility of satellites from the grid of points, wherein the second 3D model is at a second resolution that is different from and coarser than the first resolution, calculating a line-of-sight visibility of the satellites from the grid of points using a combination of the first and second 3D models, and responding to a query for an area by providing the calculated line-of-sight visibility of the satellites for points of the grid within the area.
    Type: Application
    Filed: September 19, 2022
    Publication date: April 20, 2023
    Applicant: Spirent Communications PLC
    Inventors: Jeremy Charles BENNINGTON, Richard WEST, Paul HANSEN, Esther ANYAEGBU, Matthew POTTLE
  • Publication number: 20230016836
    Abstract: Disclosed is route planning using a worst-case risk analysis and, if needed, a best-case risk analysis of GNSS coverage. The worst-case risk analysis identifies cuboids or 2d regions through which a vehicle can be routed with assurance that adequate GNSS coverage will be available regardless of the time of day that the vehicle travels. The best-case risk analysis identifies cuboids or 2d regions through which there is adequate coverage at some times during the day. In case path finding using the worst-case risk analysis fails, a best-case risk analysis can be requested and used to find alternate potential path(s). Time dependent forecast data that covers regions along the alternate potential path(s) can be requested and used to route vehicles, including autonomous drones, from starting points to destinations. This includes generation, distribution and use of risk analysis data, implemented as methods, systems and articles of manufacture.
    Type: Application
    Filed: September 19, 2022
    Publication date: January 19, 2023
    Applicant: Spirent Communications PLC
    Inventors: Matthew POTTLE, Esther Anyaegbu, Colin Richard FORD, Paul Hansen, Ronald Toh Ming Wong, Jeremy Charles Bennington, Samuel NARDONI