Patents by Inventor Matthew R. Gadinski

Matthew R. Gadinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200384603
    Abstract: The invention provides a polymer-polymer composite polishing pad useful for polishing or planarizing a substrate of at least one of semiconductor, optical and magnetic substrates. The polymer-polymer composite polishing pad includes a polishing layer having a polishing surface for polishing or planarizing the substrate; a polymeric matrix forming the polishing layer and including gas-filled or liquid-filled polymeric microelements; and fluoropolymer particles embedded in the polymeric matrix. The fluoropolymer particles have a tensile strength lower than the tensile strength of the polymeric matrix wherein diamond abrasive materials cut the fluoropolymer to form a reduced number of pad debris particles in the 1 ?m to 10 ?m size range.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Nan-Rong Chiou, Joseph So, Mohammad T. Islam, Matthew R. Gadinski, Youngrae Park, George C. Jacob
  • Publication number: 20200384602
    Abstract: The invention provides a method for polishing or planarizing a substrate. First, the method comprises attaching a polymer-polymer composite polishing pad to a polishing device. The polishing pad has a polymer matrix and fluoropolymer particles embedded in the polymeric matrix. The fluoropolymer particles have a zeta potential more negative than the polymeric matrix. Cationic particle-containing slurry is applied to the polishing pad. Conditioning the polymer-polymer composite polishing pad exposes the fluoropolymer particles to the polishing surface and creates fluoropolymer-containing debris particles in the slurry. Polishing or planarizing the substrate with the increased electronegativity from the fluoropolymer at the polishing surface and in the fluoropolymer-containing debris particles stabilizes the cationic particle-containing slurry to decreases the precipitation rate of the cationic particle-containing slurry.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Matthew R. Gadinski, Mohammad T. Islam, Nan-Rong Chiou, Youngrae Park, George C. Jacob
  • Publication number: 20200384604
    Abstract: The invention provides a polymer-polymer composite polishing pad useful for polishing or planarizing a substrate of at least one of semiconductor, optical and magnetic substrates. The polymer-polymer composite polishing pad includes a polishing layer having a polishing surface and a polymeric matrix forming the polishing layer. The polymer matrix is hydrophilic as measured with distilled water at a pH of 7 at a surface roughness of 10 ?m rms after soaking in distilled water for five minutes. Cationic fluoropolymer particles having nitrogen-containing end groups are embedded in the polymeric matrix. The cationic fluoropolymer particles can increase polishing removal rate of substrate on a patterned wafer when polishing with slurries containing anionic colloidal silica.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventor: Matthew R. Gadinski
  • Publication number: 20200384601
    Abstract: The invention provides a polymer-polymer composite polishing pad comprising a polishing layer having a polishing surface for polishing or planarizing a substrate. A polymeric matrix forms the polishing layer. Fluoropolymer particles are embedded in the polymeric matrix. Wherein diamond abrasive materials cut the fluoropolymer particles and rubbing the cut fluoropolymer against a patterned silicon wafer forms a thin film covering at least a portion of the polishing layer and the thin film has a zeta potential more negative than the polymeric matrix at a pH of 7. The polishing surface formed from rubbing with the wafer has a fluorine concentration at a penetration depth of 1 to 10 nm of at least ten atomic percent higher than the bulk fluorine concentration at a penetration depth of 1 to 10 ?m.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Mohammad T. Islam, Nan-Rong Chiou, Matthew R. Gadinski, Youngrae Park, Gregory Scott Blackman, Lei Zhang, George C. Jacob
  • Publication number: 20200384605
    Abstract: The invention provides a method for polishing or planarizing a substrate of at least one of semiconductor, optical and magnetic substrates. The method includes attaching a polymer-polymer composite polishing pad having a polishing layer to a polishing device. A hydrophilic polymeric matrix forms the polishing layer. Cationic fluoropolymer particles having nitrogen-containing end groups are embedded in the polymeric matrix. A slurry containing anionic particles is applied to the polymer-polymer composite polishing pad and rubbed against the substrate to polish or planarize the substrate with the fluoropolymer particles interacting with the anionic particles to increase polishing removal rate.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventor: Matthew R. Gadinski
  • Publication number: 20200384600
    Abstract: The invention provides a polymer-polymer composite polishing method comprising a polishing layer having a polishing surface for polishing or planarizing a substrate. The method includes attaching a polymer-polymer composite having a polishing layer and a polymeric matrix. The polymer matrix has fluoropolymer particles embedded in the polymeric matrix. Then a cationic particle slurry is applied to the polymer-polymer composite polishing pad. Conditioning the polymer-polymer composite polishing pad with an abrasive cuts the polymer-polymer composite polishing pad; and rubbing the cut polymer-polymer composite polishing pad against the substrate forms the polishing surface. The polishing surface has a fluorine concentration measured in atomic percent at a penetration depth of 1 to 10 nm of at least ten percent higher than the bulk fluorine concentration measured with at a penetration depth of 1 to 10 ?m to polish or planarize the substrate.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Mohammad T. Islam, Nan-Rong Chiou, Matthew R. Gadinski, Youngrae Park, Gregory Scott Blackman, Lei Zhang, George C. Jacob
  • Patent number: 10569384
    Abstract: The present invention concerns a chemical mechanical polishing pad having a polishing layer that possesses a consistent positive zeta potential across the entire surface. Also disclosed is a chemical mechanical polishing method using the polishing pad together with a positively charged slurry.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: February 25, 2020
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Matthew R. Gadinski, Mohammad T. Islam, Yi Guo, George C. Jacob
  • Patent number: 10465097
    Abstract: The present invention provides chemical mechanical (CMP) polishing pads for polishing a substrate chosen from a semiconductor substrate comprising the CMP polishing pad and having one or more endpoint detection windows which is the cured product of a reaction mixture of a linear cycloaliphatic urethane macromonomer having two (meth)acrylate endgroups bound via cycloaliphatic dicarbamate esters to a polyether, polycarbonate or polyester chain having an average molecular weight of from 450 to 2,000, or an cycloaliphatic urethane oligomer thereof, and an aliphatic initiator, wherein the total isocyanate content in the urethane macromonomer ranges from 3.3 to 10 wt. %, and, further wherein, the composition comprises less than 5 wt. % of unreacted (meth)acrylate monomer and is substantially free of unreacted isocyanate. Regardless of their hardness or lack thereof, the endpoint detection windows provide excellent durability when wet.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: November 5, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventor: Matthew R. Gadinski
  • Patent number: 10464188
    Abstract: The present invention concerns a chemical mechanical polishing pad having a polishing layer that possesses a consistent positive zeta potential across the entire surface. Also disclosed is a chemical mechanical polishing method using the polishing pad together with a positively charged slurry.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: November 5, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Matthew R. Gadinski, Mohammad T. Islam, Yi Guo, George C. Jacob
  • Publication number: 20190232459
    Abstract: The invention provides a polishing pad suitable for polishing integrated circuit wafers. It includes an upper polishing layer that having a polishing surface and at least one groove in the upper polishing layer. At least one transparent window is located within the upper layer. The at least one transparent window has a thickness greater than a desired wear depth of the at least one groove. The at least one transparent window includes a non-fluorescent transparent polymer; and a fluorescent transparent polymer. The transparent window allows measuring groove depth by activating the fluorescent transparent polymer with an activation source at a wavelength sufficient to excite the fluorescent transparent polymer and allow endpoint detection by sending light through the fluorescent transparent polymer and the non-fluorescent transparent polymer.
    Type: Application
    Filed: November 9, 2018
    Publication date: August 1, 2019
    Inventors: Matthew R. Gadinski, Mauricio E. Guzman, Nestor A. Vasquez, Guanhua Hou
  • Publication number: 20190224811
    Abstract: The invention provides a polishing pad suitable for polishing integrated circuit wafers. A polyurethane polishing layer has a top surface and at least one groove in the polyurethane polishing layer. At least one copolymer wear detector located within the polyurethane polishing layer detects wear of the polishing layer adjacent the at least one groove. The at least one wear detector includes two regions, a first region being a fluorescent acrylate/urethane copolymer linked with a UV curable linking group and a second non-fluorescent region, The wear detector allows detecting wear of the polishing layer.
    Type: Application
    Filed: November 9, 2018
    Publication date: July 25, 2019
    Inventors: Mauricio E. Guzman, Matthew R. Gadinski, Nestor A. Vasquez, Guanhua Hou
  • Publication number: 20190144713
    Abstract: The present invention provides chemical mechanical (CMP) polishing pads for polishing a substrate chosen from a semiconductor substrate comprising the CMP polishing pad and having one or more endpoint detection windows which is the cured product of a reaction mixture of a linear cycloaliphatic urethane macromonomer having two (meth)acrylate endgroups bound via cycloaliphatic dicarbamate esters to a polyether, polycarbonate or polyester chain having an average molecular weight of from 450 to 2,000, or an cycloaliphatic urethane oligomer thereof, and an aliphatic initiator, wherein the total isocyanate content in the urethane macromonomer ranges from 3.3 to 10 wt. %, and, further wherein, the composition comprises less than 5 wt. % of unreacted (meth)acrylate monomer and is substantially free of unreacted isocyanate. Regardless of their hardness or lack thereof, the endpoint detection windows provide excellent durability when wet.
    Type: Application
    Filed: November 16, 2017
    Publication date: May 16, 2019
    Inventor: Matthew R. Gadinski