Patents by Inventor Matthew R. Linford

Matthew R. Linford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11746418
    Abstract: Thick, inorganic coatings can be deposited on a polarizer by chemical vapor deposition. In one embodiment, the method can comprise activating a surface of the polarizer with an oxygen plasma in an oven; injecting a solution including tetrakis(dimethylamino)silane dissolved in cyclohexane and water into the oven; and vapor depositing silicon dioxide onto the polarizer. These three steps can be repeated multiple times until desired thickness is attained.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: September 5, 2023
    Assignee: Moxtek, Inc.
    Inventors: Matthew R. Linford, Brian Johnson, Anubhav Diwan
  • Publication number: 20210122926
    Abstract: A method for preventing contamination of a substrate surface includes obtaining a substrate having a surface to be protected from contamination and depositing a removable protective salt coating on the substrate surface. A disclosed method also includes storing the substrate surface having the removable protective salt coating for a time period and then removing the protective salt coating. A method for selectively preventing atomic layer deposition (ALD) on a substrate surface exposed to an ALD process includes depositing a removable protective salt coating on the substrate surface, exposing the surface to an ALD process, and removing the protective salt coating. Some disclosed substrate surfaces include a thiol-on-gold monolayer, a silicon wafer, glass, a silanized surface, and a dental implant. The protective salt coating may have a thickness in the range of 50 nm to 1 ?m. The protective salt coating may be deposited by thermal evaporation or similar process.
    Type: Application
    Filed: October 29, 2020
    Publication date: April 29, 2021
    Inventors: Matthew R. Linford, Dhruv Shah
  • Patent number: 10969307
    Abstract: An extractive system, such as SPME, has an adsorptive phase in the form of a porous coating that has essentially vertical, mutually supporting, columnar structures with nanospaces at the boundaries of the grains.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 6, 2021
    Assignee: Moxtek, Inc.
    Inventors: Matthew R. Linford, Anubhav Diwan, Bhupinder Singh
  • Publication number: 20200173021
    Abstract: Thick, inorganic coatings can be deposited on a polarizer by chemical vapor deposition. In one embodiment, the method can comprise activating a surface of the polarizer with an oxygen plasma in an oven; injecting a solution including tetrakis(dimethylamino)silane dissolved in cyclohexane and water into the oven; and vapor depositing silicon dioxide onto the polarizer. These three steps can be repeated multiple times until desired thickness is attained.
    Type: Application
    Filed: November 5, 2019
    Publication date: June 4, 2020
    Inventors: Matthew R. Linford, Brian Johnson, Anubhav Diwan
  • Patent number: 10534120
    Abstract: A wire grid polarizer and method of making a wire grid polarizer can protect delicate wires of the wire grid polarizer from damage. The wire grid polarizer can include a protective-layer located on an array of wires. The array of wires can further be protected by a chemical coating on an inside surface of the air-filled channels, closed ends of the air-filled channels, damaged wires of the array of wires in a line parallel to an edge of the wire grid polarizer, or combinations thereof. The method can include (i) providing the wire grid polarizer, (ii) applying the protective-layer, by physical vapor deposition or chemical vapor deposition but excluding atomic layer deposition, onto the array of wires, (iii) cutting the wire grid polarizer wafer into multiple wire grid polarizer parts, then (iv) protecting the array of wires.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: January 14, 2020
    Assignee: Moxtek, Inc.
    Inventors: R. Stewart Nielson, Mathew Free, Bradley R. Williams, Matthew R. Linford, Anubhav Diwan, Fred Lane, Shaun Ogden
  • Publication number: 20190346346
    Abstract: An extractive system, such as SPME, has an adsorptive phase in the form of a porous coating that has essentially vertical, mutually supporting, columnar structures with nanospaces at the boundaries of the grains.
    Type: Application
    Filed: July 23, 2019
    Publication date: November 14, 2019
    Inventors: Matthew R. Linford, Anubhav Diwan, Bhupinder Singh
  • Patent number: 10422725
    Abstract: An extractive system, such as SPME, has an adsorptive phase in the form of a porous coating that has essentially vertical, mutually supporting, columnar structures with nanospaces at the boundaries of the grains.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: September 24, 2019
    Assignee: Moxtek, Inc.
    Inventors: Matthew R. Linford, Anubhav Diwan, Bhupinder Singh
  • Publication number: 20180195936
    Abstract: An extractive system, such as SPME, has an adsorptive phase in the form of a porous coating that has essentially vertical, mutually supporting, columnar structures with nanospaces at the boundaries of the grains.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 12, 2018
    Inventors: Matthew R. Linford, Anubhav Diwan, Bhupinder Singh
  • Patent number: 9939351
    Abstract: An extractive system, such as SPME, has an adsorptive phase in the form of a porous coating that has essentially vertical, mutually supporting, columnar structures with nanospaces at the boundaries of the grains.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: April 10, 2018
    Assignee: Moxtek, Inc.
    Inventors: Matthew R. Linford, Anubhav Diwan, Bhupinder Singh
  • Publication number: 20170293059
    Abstract: A wire grid polarizer and method of making a wire grid polarizer can protect delicate wires of the wire grid polarizer from damage. The wire grid polarizer can include a protective-layer located on an array of wires. The array of wires can further be protected by a chemical coating on an inside surface of the air-filled channels, closed ends of the air-filled channels, damaged wires of the array of wires in a line parallel to an edge of the wire grid polarizer, or combinations thereof. The method can include (i) providing the wire grid polarizer, (ii) applying the protective-layer, by physical vapor deposition or chemical vapor deposition but excluding atomic layer deposition, onto the array of wires, (iii) cutting the wire grid polarizer wafer into multiple wire grid polarizer parts, then (iv) protecting the array of wires.
    Type: Application
    Filed: June 23, 2017
    Publication date: October 12, 2017
    Inventors: R. Stewart Nielson, Mathew Free, Bradley R. Williams, Matthew R. Linford, Anubhav Diwan, Fred Lane, Shaun Ogden
  • Patent number: 9511575
    Abstract: In one or more embodiments, a porous composite particulate material includes a plurality of composite particles including an acid-base-resistant core particle at least partially surrounded by one or more layers of acid-base-resistant shell particles. The shell particles are adhered to the core particle by a polymeric material. The shell particles and/or core particles may be made from an acid-base-resistant material that is stable in harsh chemical conditions. During application of the polymeric material/shell particle bilayer, the core particles are sonicated to homogenize the particle size distribution and minimize agglomeration of particles. Multiple bilayers of polymer/shell particles may be applied. In one embodiment, the core particle comprises generally spherical glassy carbon, while the shell particles may comprise nano-sized diamond particles. Other acid-base-resistant materials may be employed.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: December 6, 2016
    Assignee: BRIGHAM YOUNG UNIVERSITY
    Inventors: Matthew R. Linford, Chuan-Hsi Hung
  • Publication number: 20160158728
    Abstract: Modified diamond particles for use in chromatography with a desired functional group at the diamond surface, formed from reaction of hydroxyl groups at diamond surfaces with a reactive molecule.
    Type: Application
    Filed: February 10, 2016
    Publication date: June 9, 2016
    Inventors: Matthew R. Linford, Landon A. Wiest, David Jensen
  • Publication number: 20160118077
    Abstract: An optical tape data storage is disclosed. An optical tape includes a substrate in a linear thin film shape and a recording layer deposited on the substrate. An irreversible optically detectable change is formed in the recording layer upon application of energy to the recording layer such that data is recorded on the recording layer by forming optically detectable changes. The recording layer may comprise a metal, a metal alloy, a metal oxide, a metalloid, or any combination thereof. The optical tape may further include an adhesion promotion layer for improving adhesion of the recording layer and the substrate, a reflective layer for providing optical contrast to an adjacent layer, and/or an absorptive layer positioned adjacent to the recording layer to absorb ablatable material not entirely ablated during ablation.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 28, 2016
    Inventors: Barry M. Lunt, Matthew R. Linford, Robert C. Davis
  • Patent number: 9283543
    Abstract: Modified diamond particles for use in chromatography with a desired functional group at the diamond surface, formed from reaction of hydroxyl groups at diamond surfaces with a reactive molecule.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: March 15, 2016
    Assignee: BRIGHAM YOUNG UNIVERSITY
    Inventors: Matthew R. Linford, David Scott Jensen, Landon Andrew Wiest
  • Patent number: 9283541
    Abstract: In an embodiment, a method for manufacturing a thin layer chromatography (“TLC”) plate is disclosed. The method includes forming a layer of elongated nanostructures (e.g., carbon nanotubes), and at least partially coating the elongated nanostructures with a coating. The coating includes a stationary phase and/or precursor of a stationary phase for use in chromatography. The stationary phase may be functionalized with hydroxyl groups by exposure to acidified water vapor or immersion in a concentrated acid bath (e.g., HCl and methanol). At least a portion of the elongated nanostructures may be removed after being coated. Embodiments for TLC plates and related methods are also disclosed.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: March 15, 2016
    Assignee: BRIGHAM YOUNG UNIVERSITY
    Inventors: Matthew R. Linford, Robert C. Davis, Richard R. Vanfleet, David Scott Jensen, Li Yang, Jun Song
  • Publication number: 20160038914
    Abstract: In an embodiment, a porous composite particulate material includes a plurality of composite particles. Each composite particle includes an acid-base-resistant core particle at least partially surrounded by one or more layers of acid-base-resistant shell particles. The shell particles are adhered to the core particle by a polymeric layer. The shell particles and/or core particles may be made from an acid-base-resistant material that is stable in harsh chemical conditions. For example, the shell particles and/or core particles may be made from diamond, graphitic carbon, silicon carbide, boron nitride, tungsten carbide, niobium carbide, zirconia, noble metals, acid-base stable highly cross-linked polymers, acid-base stable at least partially cross-linked polymers, titania, alumina, thoria combinations of the foregoing, or other acid-base-resistant materials.
    Type: Application
    Filed: October 16, 2015
    Publication date: February 11, 2016
    Inventors: Matthew R. Linford, Andrew E. Dadson, Landon A. Wiest, David S. Jensen
  • Publication number: 20160030924
    Abstract: In an embodiment, a porous composite particulate material includes a plurality of composite particles. Each composite particle includes an acid-base-resistant core particle at least partially surrounded by one or more layers of acid-base-resistant shell particles. The shell particles are adhered to the core particle by a polymeric layer. The shell particles and/or core particles may be made from an acid-base-resistant material that is stable in harsh chemical conditions. For example, the shell particles may be made from diamond, graphitic carbon, silicon carbide, boron nitride, tungsten carbide, niobium carbide, zirconia, noble metals, combinations of the foregoing, or other acid-base-resistant materials and the core particle may include at least one exterior layer of non-diamond carbon. The porous composite particulate materials disclosed herein and related methods and devices may be used in separation technologies, including, but not limited to, chromatography and solid phase extraction.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 4, 2016
    Inventors: David Scott Jensen, Andrew E. Dadson, Matthew R. Linford
  • Publication number: 20150377847
    Abstract: In an embodiment, a method for manufacturing a thin layer chromatography (“TLC”) plate is disclosed. The method includes forming a layer of elongated nanostructures (e.g., carbon nanotubes), and at least partially coating the elongated nanostructures with a coating. The coating includes a stationary phase and/or precursor of a stationary phase for use in chromatography. At least a portion of the elongated nanostructures may be removed after being coated. Embodiments for TLC plates and related methods are also disclosed.
    Type: Application
    Filed: September 2, 2015
    Publication date: December 31, 2015
    Inventors: Matthew R. Linford, Robert C. Davis, Richard Vanfleet, David S. Jensen, Li Yang, Jun Song
  • Publication number: 20150367253
    Abstract: In an embodiment, a method for manufacturing a chromatography apparatus such as a thin layer chromatography (“TLC”) plate is disclosed. The method includes forming a layer of elongated nanostructures (e.g., carbon nanotubes), and at least partially coating the oxidized elongated nanostructures with a coating. The coating includes a stationary phase and/or precursor of a stationary phase and at least one photoluminescent material for use in chromatography. Embodiments for TLC plates and related methods are also disclosed.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 24, 2015
    Inventors: Supriya Kanyal, Cody Vic Cushman, Matthew R. Linford, David Scott Jensen
  • Patent number: 9217734
    Abstract: In an embodiment, a method for manufacturing a thin layer chromatography (“TLC”) plate is disclosed. The method includes forming a layer of elongated nanostructures (e.g., carbon nanotubes), and at least partially coating the elongated nanostructures with a coating. The coating includes a stationary phase and/or precursor of a stationary phase for use in chromatography. Embodiments for TLC plates and related methods are also disclosed.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: December 22, 2015
    Assignee: BRIGHAM YOUNG UNIVERSITY
    Inventors: Matthew R. Linford, Robert C. Davis, Richard Vanfleet, David Scott Jensen, Li Yang, Jun Song